

PERIYAR PALKALAI NAGAR SALEM 636 001

Degree of Bachelor of Science OUTCOME BASED EDUCATION

Syllabus for **B.Sc. BIOTECHNOLOGY**

(SEMESTER PATTERN)

(For Candidates admitted in the Colleges affiliated to Periyar University from 2021-2022 onwards)

OBE PATTERN REGULATIONS (From 2021 – 2022 Onwards)

Scheme of Examination and Course Structure (semester wise)

PERIYAR UNIVERSITY, SALEM – 11
BACHELOR OF SCIENCE
BRANCH – BIOTECHNOLOGY
OBE PATTERN REGULATIONS

(The revised syllabus shall be effective from the academic year 2021-2022 onwards)

1. Objectives

Biotechnology is the research-oriented science including a fusion of biology and technology. This study includes a large variety of subjects including Biochemistry, Genetics, Microbiology, Biochemistry, Immunology and Engineering. It is associated with other subjects such as Health and Medicine, Bio-statistics, Cell Biology, Seed Technology, Plant Biotechnology etc. Biotechnology features the use of living cells and bacteria in the industrial process. Biotechnology can be applied in developing various vaccines, medicines and diagnostics, improving energy production and conservation and increasing productivity.

The objectives of the course are

- To impart the knowledge about the theoretical development of Biotechnology.
- To elucidate the use of various Biological Science concepts which are required for the development of Biotechnology.
- To emphasize the scope of using biotechnology tools in various disciplines.
- To equip the students with effective applications of various biotechnology tools for solving many real life problems.
- To provide a platform for pursuing higher studies such as Post-graduate and Doctorate degrees

Learning Outcomes

On successful completion of the B. Sc. Biotechnology program,

- The students should be able to demonstrate proficiency in basic science and fundamental biotechnological tools□
- The graduates could understand the working principles of advanced biological sciences□

- \bullet The graduates acquire employability skills in the field of Pharmaceutical, food and agricultural industries \Box
- The graduates get motivated towards deep learning, higher studies and research in life sciences□
- \bullet The graduates develop health and environment awareness towards social \square Responsibility.

PO	PROGRAMME OUTCOME	Knowledg e Level
No		
PO1	Disciplinary knowledge: Ability to understand fundamental concepts of Biotechnology; Ability to apply basic principles of chemistry to Biological Systems and genetics; Ability to relate various interrelated Molecular biology and Molecular genetics; A general awareness of current developments at the forefront in Biotechnology and Allied subjects; Ability to critically evaluate a problem and resolve to challenge blindly accepted concepts; Zeal and ability to work safely and effectively in a laboratory; Good experimental and quantitative skills encompassing preparation of laboratory reagents, conducting experiments, satisfactory analysis of data and interpretation of results; Awareness of resources, and their conservation; Ability to think laterally and in an integrating manner and develop interdisciplinary approach; Overall knowledge of the avenues for research and higher academic achievements in the field of Biotechnology, nanotechnology, genectic enginerring ,pharmaceutical biotechnology and bioinformatics subjects.	K 3
PO2	Communication Skills: Ability to speak and write clearly in English; Ability to listern to and follow scientific view points and engage with them.	К 2
PO3	Problem solving: Ability to closely observe the situation, and apply lateral thinking and analytical skills.	K 4
PO4	Analytical reasoning : Ability to evaluate the strengths and weaknesses in scholarly texts spotting flaws in their arguments; Ability to use critics and theorists to create a framework and to substantiate one's argument in one's reading of scientific texts.	K4
PO5	Team work /Time Management : Ability to participate constructively in class room discussions; Ability to contribute to group work; Ability to meet a deadline.	К6
PO6	Scientific reasoning: Ability to analyse, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective. Ability to formulate logical and convincing arguments.	К4
PO7	Self-directed learning: Ability to work independently in terms of organizing laboratory, and critically analyzing research literature; Ability to postulate hypothesis, questions and search for answers.	К6
PO8	Digital literacy: Ability to use digital sources, and apply various platforms to convey and explain concepts of Biotechnology	К3

PO9	Moral and ethical awareness/reasoning: Ability to interrogate one's own ethical values and to be aware of ethical and environmental issues; Ability to read values inherited in society and criticism vis a vis, the environment, religion and spirituality as also structures of power	К3
PO10	Leadership readiness: Ability to lead group discussions, to formulate questions related to scientific and social issues.	К6

K1 – Remember; K2-Understand; K3-Apply; K4-Analyse; K5-Evaluate; K6-Create

OBE PATTERN REGULATIONS (From 2021 – 2022 Onwards)

PERIYAR UNIVERSITY, SALEM - 11.

DEFINITION

Programme: "Programme" means a course of study leading to the award of a degree in a discipline.

Course: "Course" refers to a subject offered under the degree programme spread over the complete Programme of study a sunder.

Part I : means "Tamil/other languages" offered under the programme.

Part II : means "English" language offered under the programme.

Part III: :means "Allied subjects" offered as allied, which is interdisciplinary in nature but related to the programme.

Part III: means "Elective subjects" related to the core subjects of the programme concerned.

PART IV

i) "Tamil" means basic orientation in Tamil language for those students who have not studied Tamilupto 12 standard.

- ii) —Advanced Tamil means, the subject is meant for students who have studied Tamil language upto 12th standard and chosen other languages in college but would like to advance their Tamil language skills.
- iii) "Non-Major Electives" means option is being given to students who do not come under the above two categories (i & ii).
- **iv)** Skill based subject means the courses offered under the programme related to Advanced Skill acquisition for industrial application for which a separate Diploma will be awarded along with the Degree.
- v) "Foundation Course" means courses offered as

Value Education - Manavalakkalai yoga (1 year)

Environmental Studies (1styear)

Part V

"Extension Activities" means all those activities which form part of NSS/NCC/Sports/YRC and other co and extracurricular activities.

A detailed explanation of the above with relevant credits are given under "Scheme of Examination along with Distribution of Marks and Credits"

Duration: Means the stipulated years of study to complete a programme as prescribed by the University time to time. Currently for the undergraduate programme the duration of study is THREE years. These regulations apply to the regular course of study in approved institutions of the University.

Credits: Means the weightage given to each course of study (subjects)attributed by the experts of the Board of Studies concerned.

Credit System: Means, the course of study under this pattern, where weightage of credits are spread over to different semesters during the period of study and the Cumulative Grade Point Average will be awarded based on the credits earned by the students. The following are the total credit points:

For Undergraduate Programme (Three years): 140

4. AIM AND SCOPE OF THE COURSE:

❖ The topics included in different units of different papers would enable the students to develop= technical skills in technology and applied branches.

- ❖ Skill based subjects like Bioinstrumentation, Developmental Biology, Nanobiotechnology and Bioinformatics and Proteomics and Genomics have been included in order to provide opportunities in employment and research in Government and Private Organizations.
- There is also scope for self employment for the students.
- Practicals included in the syllabus will improve the skills of the students in Plant tissue culture, Animal tissue culture, Molecular biology, Immunology, Genetic engineering, Bioprocess technology, Enzymology and Laboratory techniques.

i) Eligibility for Admission

A candidate who has passed Higher Secondary Examination in any one of the biological sciences (Botany/Zoology, Biology).(Academic/Vocational stream-Agri, Home Science, Poultry) under higher secondary board of examination, Tamil Nadu or as per norms set by the Government of Tamil Nadu or an examination accepted as equivalent thereto by the Syndicate.

ii) Duration of the Course

The course for the degree of Bachelor of Science shall consist of three academic years divided in to six semesters. Each semester consists of 90 working days.

5. PASSING MINIMUM

examination.

The candidate shall be declared to have passed the examination if the candidate secures not less than 30 marks out of 75 marks in the University Examination (UE) in each theory paper and 10 marks (out of 25) in the Continuous Internal Assessment (CIA) in each theory paper. For the Practical paper, a minimum of 24 marks (out of 60) in the University Examination (UE) and 16 marks (out of 40) in the Continuous Internal Assessment (CIA) is required to pass the

The CIA of each practical paper includes evaluation of record. However submission of record for the University Practical Examination is mandatory.

Examinations	Maximum Marks		Passing Minimum		•	
	CIA	UE	Total	CIA	UE	Total
Theory Paper	25	75	100	10	30	40
Practical Paper	40	60	100	16	24	40

6. CLASSIFICATION OF SUCCESSFUL CANDIDATES

Candidates who secure not less than 60% of the aggregate marks in the whole examination shall be declared to have passed the examination in the First Class.

All other successful candidates shall be declared to have passed in the Second Class. Candidates who obtained 75% of the marks in the aggregate shall be deemed to have passed the examination in First Class with Distinction provided they pass all the examinations prescribed for the course at the first appearance.

Candidates who pass all the examinations prescribed for the course in the first instance and within a period of three academic years from the year of admission to the course only are eligible for University Ranking.

1. **Passing Minimum** is 40% of the **ESE** and also 40% of the minimum of the paper/course.

2. Minimum Credits to be Earned:

For THREE year Programme: Best 140 Credits

Part I and II: Languages

Part III : Major, Elective, Allied

Part IV : Soft Skills

Part V : Extension Activities

6. Marks and Grades:

The following table gives the marks, grade points, letter grades and classification to indicate the performance of the candidate.

Conversion of Marks to Grade Points and Letter Grade (Performance in a Course/Paper)

RANGE OF MARKS	GRADE POINTS	LETTER GRADE	DESCRIPTION
90 –100	9.0 - 10.0	0	Outstanding
80–89	8.0 - 8.9	D+	Excellent
75–79	7.5 - 7.9	D	Distinction
70–74	7.0 - 7.4	A+	Very Good

60–69	6.0 - 6.9	А	Good
50–59	5.0 - 5.9	В	Average
40–49	4.0 - 4.9	С	Satisfactory
00–39	0.0	U	Re-appear
ABSENT	0.0	AAA	ABSENT

CALCULATION OF GPA AND CGPA

For a Semester:

 $GPA = \frac{Sum of the Multiplication of Grade Points by the Credits of the Courses}{Sum of the Credits of the Courses in a Semster}$

$$Grade\ Point\ Average\ (GPA) = \ \frac{\sum_{i} C_{i}G_{i}}{\sum_{i} C_{i}}$$

For the entire Programme: CGPA

= Sum of the Multiplication of Grade Points by the Credits of the Entire Programme

Sum of the Credits of the Courses of the Entire Programme

 $\mathbf{C_i}$ = Credits earned for course 'i' in any semester $\mathbf{G_i}$ = Grade Point obtained for course 'i' in any semester.

n refers to the semester in which such courses were credited

CGPA	GRADE	CLASSIFICATION OF FINAL RESULT
9.5-10.0	0+	First Class With Exemplary*
9.0 and above but below 9.5	0	First class with Exemplary
8.5 and above but below 9.0	D++	
8.0 and above but below 8.5	D+	First Class With Distinction*
7.5 and above but below 8.0	D	

7.0 and above but below 7.5	A++	
6.5 and above but below 7.0	A+	First Class
6.0 and above but below 6.5	А	
5.5 and above but below 6.0	B+	Second Class
5.0 and above but below 5.5	В	
4.5 and above but below 5.0	C+	Third Class
4.0 and above but below 4.5	С	
0.0 and above but below 4.0	U	Re-appear

^{*}The candidates who have passed in the first appearance and within the prescribed Semester of the UG Programme (Major, Allied and Elective Courses Alone) are eligible

8. MAXIMUM DURATION FOR THE COMPLETION OF THE UG PROGRAMME

The maximum duration for completion of the UG Programme will not exceed twelve semesters.

9. COMMENCEMENT OF THIS REGULATION

The OBE regulations shall take effect from the academic year 2021 – 2022 (i.e.) for the students who are admitted in the first year of the course during the academic year 2021 – 2022 and thereafter.

10. TRANSITARY PROVISION

Candidates who were admitted to the UG course of study prior to 2021-2022 will be permitted to appear for the examination under those regulations for a period of three years (i.e.) up to and inclusive of the examinations of April/May 2024. Thereafter they will be permitted to appear for the examination based on the regulations then in force.

QUESTION PAPER PATTERN AND EVALUTION FOR ALL COURSES

11.1 Distribution of Marks for Theory Examinations:

EXAMINATIONS	MARKS
CIA (Continuous Internal Assessment)	25 Marks
UE (University Examinations)	75 Marks
TOTAL	100 Marks

11.2 Evaluation of Continuous Internal Assessment (CIA):

S.NO	INTERNAL ASSESSMENT	DISTRIBUTION OF MARKS
1	Test	15 Marks
2	Assignments	5 Marks
3	Attendance	5 Marks
TOTAL		25 Marks

11.3. Question Paper Pattern for Core / Allied/Elective/SBEC Papers (Theory):

Time: Three hours Maximum Marks: 75

Part - A (15 x 1 = 15)

Answer ALL questions (Three Questions from Each Unit)

Part - B $(2 \times 5 = 10)$

Answer any TWO questions (One Question from Each Unit)

Part - C (5 x 10 = 50)

Answer ALL questions

(One Question from Each Unit with Internal Choice)

11.4 Distribution of Marks for Core and Allied I Practical:

EXAMINATIONS	MARKS
CIA (Continuous Internal Assessment) Including Practical Record	40 Marks
UE (University Examinations)	60 Marks
TOTAL	100 Marks

11.5. Evaluation of Continuous Internal Assessment (CIA) for Core and Allied Practical:

S.NO	INTERNAL ASSESSMENT	DISTRIBUTION OF MARKS
1	Record	25 Marks
2	Test	10 Marks
3	Attendance	5 Marks
	TOTAL	40 Marks

	Value added courses/ Job oriented Certificate courses	Optional
	UGC-SWAYAM online /MOOC's, NPTEL courses	Optional

Note: Subject code to be cross verified especially for allied Biostatistics and Computer Science Course

12.SCHEME OF EXAMINATIONS

The scheme of examination for different semesters shall be as follows:

Course structure under OBE (semester – wise details) B.Sc., Biotechnology (for the students admitted from the academic year 2021-2022 onwards)

Course structure under OBE (Semester-wise Details) Biotechnology

(For the students admitted from the Academic year 2021-2022 onwards)

						MAR	KS			
PA RT	PAPER CODE	COURSE	TITLE OF THE PAPER	HOU RS	CRE DIT	CI A	UE	TOTA L		
			SEMESTER – I							
I	21UFTA01	Language I	Tamil – I	6	3	25	75	100		
II	21UFEN01	Language II	English – I	6	3	25	75	100		
IV	21UPEL01		Professional English I	6	4	25	75	100		
	21UBT01	Core Theory – I	Cell Biology	5	4	25	75	100		
III	21UBCA01	Allied I: Theory - I	Biochemistry -I	5	3	25	75	100		
	21UBCAP0 1	Allied Practical – I	Lab in Biochemistry - I*	3	-	-	-	-		
	21UBTP01	Core Practical – I	Lab in Cell biology	3	3	40	60	100		
IV	21UVE01	Common	Value Education (Yoga)	2	2	10 0	75	100		
	NO. O	F COURESES – 7	TOTAL	36	22	-	-	700		
	* Examination at the End of Second Semester									
			SEMESTER – II							
I	21UFTA02	Language	Tamil – II	5	3	25	75	100		
	21UFEN02	Language	English – II	5	3	25	75	100		
II II	21UPEL02		Professional English II	4	4	25	75	100		
	NMSDC	Language Proficiency for Employability	Effective English	2	2	25	75	100		
	21UBT02	Core Theory – II	Genetics	5	4	25	75	100		
III	21UBCA02	Allied I: Theory - II	Biochemistry - II	5	3	25	75	100		
	21UBTP02	Core Practical – II	Lab in Genetics	3	3	40	60	100		
	21UCAP01	Allied practical- I	Lab in Biochemistry	3	3	40	60	100		
IV	21UES01	Common	Environmental Studies	2	2	25	75	100		
IV	21UBTS01	SBEC – I	Bioinstrumentation	2	2	25	75	100		
	NO. O	F COURESES – 9	TOTAL	36	29	-	-	1000		
			SEMESTER – III	•	•					
I	21UFTA03	Language	Tamil – III	5	3	25	75	100		

II	21UFEN03	Language	English – III	5	3	25	75	100		
	21UBT03	Core Theory – III	General Microbiology	5	4	25	75	100		
	21USTA05	Allied II: Theory -	Biostatistics	5	3	25	75	100		
III	21UBTP03	CORE PRACTICAL – III	Lab in Microbiology	3	3	25	75	100		
		Allied Practical	Computer Practical *	3	-	-	-	-		
IV	21UBTS02	SBEC- II	Developmental Biology	2	2	25	75	100		
		NMEC – I		2	2	25	75	100		
	NO. OF CO	OURESES – 7	TOTAL	30	20	-	-	700		
			nation at the End of Fourt Semester	th						
		SE	MESTER – IV							
I	21UFTA04	Language	Tamil – IV	5	3	25	75	100		
II	21UFEN04	Language	English – IV	5	3	25	75	100		
	21UBT04	Core Theory – IV	Molecular Biology	5	4	25	75	100		
III		Allied II: Theory – IV	E-Commerce Techniques (OR) Computer Application in office	4	4	25	75	100		
	21UBTP04	Core Practical – IV	Lab in Molecular Biology	3	3	40	60	100		
		Allied Practical IV	HTML Programming (OR) Lab in Office Automation	3	3	40	60	100		
IV		SBEC-NMSDC Digital skills for Employability	Office Fundamentals	2	2	25	75	100		
		NMEC – II		2	2	25	75	100		
	Internship Programme	Fruit and Beverage Horticulture Resear Organic Farming, N TNAU, Veterinary Lab, Molecular Bio	Plant, Sugarcane Industry, Industries, Aavin Diary, ech Station, Soil Testing							
	NO. OF CO	OURESES – 7	TOTAL	30	24	-	-	800		
	SEMESTER – V									

	21UBT05	Core Theory – V	Plant Biotechnology	6	5	25	75	100
	21UBT06	Core Theory – VI	Immunology and Immunotechnology	5	4	25	75	100
III	21UBT07	Core Theory – VII	Genetic Engineering	6	4	25	75	100
		Elective – I		5	4	25	75	100
	21UBTP05	Core Practical – V	Lab in Plant biotechnology	3	4	40	60	100
	21UBTP06	Core Practical - VI	Lab in Genetic Engineering and Immunology	3	4	40	60	100
IV	21UBTS03	SBEC – III	Nano Biotechnology and Bioinformatics	2	2	25	75	100
NO. OF COURESES – 7		TOTAL	30	27	-	-	700	

			EMESTER – VI					
	21UBT08	Core Theory – VIII	Animal Biotechnology	6	4	25	75	100
	21UBT09	Core Theory – IX	Food Biotechnology	6	4	25	75	100
III	21UBT10	Core Theory X	Bioprocess and Enzyme technology	5	4	25	75	100
		Elective – II Medical Coding for Employability	Medical Coding	2	2	25	75	100
	21UBTP07	Core Practical – VII	Lab in Animal Biotechnology	4	4	40	60	100
	21UBTP08	Core Practical – VIII	Lab in Bioprocess Technology and enzymology	4	4	40	60	100
IV	21UBTS04	SBEC – IV	Pharmaceutical Biotechnology	2	2	25	75	100
V	21UEX01	Common	Extension Activities	-	1	-	-	-
	NO. OF CO	OURESES – 8	TOTAL	30	25	-	-	700
T	OTAL NO. O	F COURESES – 42	GRAND TOTAL	180	147	-	-	4600

UE – University Examination

CIA – Continuous Internal

Assessment

SBEC – Skill Based Elective Course NMEC – Non-Major Elective

Course

SCHEME OF EXAMINATIONS FROM THE ACADEMIC YEAR 2021 -2022 CREDIT DISTRIBUTION AS PER THE UNIVERSITY NORM

SEMESTER	I	II	III	IV	V	VI	TOTAL CREDITS
PART- I	3	3	3	3	-	-	12
PARI -II	3	3	3	3	-	-	12
ALLIED	4	4	4	4	-	-	16
ALLIED PRACTICAL	-	3	-	3	-	-	6
CORE THEORY	4	4	4	4	12	12	40
CORE PRACTICAL	3	3	3	3	8	8	28
ELECTIVE	-	-	-	-	4	4	8
SBEC	-	2	2	-	2	2	8
NMEC	-	-	2	2	-	-	4
EVS	-	2	-	-	-	-	2
VALUE EDUCATION	2	-	-	-	-	-	2
AD -ON COURSE	-	-	-	-	-	-	-
EXTENSION ACTIVITY	-	-	-	-	-	1	1
PROFESSIONAL ENGLISH PHYSICAL SCIENCE	4	4	-	-	-	-	8
CUMULATIVE TOTAL CREDIT	23	28	21	22	26	27	147

ELECTIVE SUBJECTS

Sem	Part	Subject Code	Subject
.,		21UBTE01	MEDICAL BIOTECHNOLOGY
V	III	21UBTE02	ENTERPREUNERSHIP IN BIOTECHNOLOGY
VI	III		MEDICAL CODING

SKILL BASED ELECTIVE COURSES SUBJECTS

		SUB CODE		Hrs.			M	ARKS	
M PART		305 0052	COURSE	Lect	LAB	CRE DIT	CIA	A EA	ТОТА
			SEMESTER – IV						
IV	' II		Bioinstrumentation	2	-	2	25	75	100
	III		Developmental Biology	2	-	2	25	75	100
	V		Nanobiotechnology and	2	-	2	25	75	100
			Bioinformatics	2	_	2	25	75	100
	VI		Pharmaceutical biotechnology	_		-		, 3	100
			ALLIED PAPERS I YEAR						
III			Biochemistry I	6	-	4	25	75	100
	1	I	Biochemistry II	5	-	4	25	75	100
			ALLIED PAPERS AND PRACTICAL						
III	ı		Biostatistics	5	-	4	25	75	100
	IV	OPTION- 1	THEORY -1 Computer application in office AND PRACTICALOFFICE	6	-	4	25	75	100
		OPTION-I	AUTOMATION LAB OR						
			THEORY -1 E-COMMERCE TECHNIQUES AND PRACTICAL HTML PROGRAMING LAB						

NON MAJOR ELECTIVE COURSE SUBJECTS

Sem	Part	Subject Code	Subject
III	PART IV	21UBTN01	Concept of biotechnology

IV	PART IV	21UBTN02	Biotechnology for human welfare
----	---------	----------	---------------------------------

ALLIED: COMPUTER SCIENCE

OPTION – I THEORY: E-COMMERCE TECHNIQUES AND PRACTICAL: HTML

PROGRAMMING

OPTION – II THEORY: COMPUTER APPLICATION IN OFFICE AND OFFICE AUTOMATION

LAB

From the above two OPTIONS students can choose anyone option

FIRST SEMESTER

(For the candidates admitted from the Academic year 2021 –2022 onwards)							
COURSE	B.Sc. Biotechnology						
SEMESTER	1						
CORE THEORY	I						
PAPER CODE	21UBT01						
TITLE OF THE PAPER	Cell Biology						
HOURS/WEEK	5						
NO. OF CREDITS	4						

Learning Objectives

- Students will understand the structures and purposes of basic components of prokaryotic and eukaryotic cells, especially macromolecules, membranes, and organelles
- Students will understand how these cellular components are used to generate and utilize energyin cells
- Students will understand the cellular components underlying mitotic cell division On successful completion of the subject the student should have understood the Structuralfeatures, Organelles and the cellular mechanisms

Course Outcome

ON SUCCESSFUL COMPLETION OF THIS COURSE, STUDENTS SHOULD BE PROFICIENT TO

Course No	Course Outcome Details	Knowledge level
CO1	Design the model of a cell. Differentiate the structure of prokaryotic and eukaryotic cell.	K2
CO2	Explain the organization of Genes and chromosomes, chromosome morphology and its aberrations	K2
CO3	Compare and contrast the events of cell cycle and its regulation	K2
CO4	Explain the communications of cells with other cells and to the environment	К3

CO5		К3
	To know the cell organelles and locate its	
	parts along with functions	

MAPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S: STRONG

M:MEDIUM

L:LOW UNIT I

Cell as a basic unit, Cell theory, Cell size and Shape, Prokaryotic and Eukaryotic organization, Structural comparison of microbial, plant and animal cells.

UNIT II

Cell wall and Membrane: Plasma membrane-Model of plasma membrane, fluidity of membranes, membrane proteins and their functions; Transport across the membrane-Selective permeability of membranes; Cell adhesion; Cell junction.

UNIT III

Structure and functions of cell organelle;Mitochondria,chloroplast,Endoplasmic reticulam,Golgi

Complex, Lysosomes, Ribosomes, Peroxisomes, Glyoxisomes, Vacuoles, centrioles, cytosols, Microt ubules and Microfilaments.

UNIT IV

Cell cycle and Cell Signalling: Cell division, Cell cycle, Mitosis, Meiosis, Cell signaling, G-protein receptors, Cell membrane traffic, Cellular senescence and Apoptosis.

UNIT V

Specialised cells,Motile cells(Amoeboid ,Ciliary,Flagellar Movements,Nerve cells and Nerve impulse conduction,Muscle cells and Muscle contraction,Plant cells (Parenchyma cells,Xylem and Phloem Cells)

REFERENCE BOOKS:

- 1.**De Robertis.,**Cell Biology,Blaze Publishers and Distributors Pvt .Ltd.,New Delhi 2.**Gerald Karp.**,Cell and Molecular Biology Concepts and Experiments-4TH Edition
- 3. Wilson & Marrison., Cytology, Reinform Publications.
- 4. **Ajoy Paul.**,2011.Text Book of Cell and Molecular Biology-Books and Allied (P)Ltd,Kolkata,3rd Edition.
- 5.**Aminul Islam** .,2011,Text Book of Cell Biology-Books and Allied(P)Ltd,Kolkata.1ST Edition.
- 6.**Sharp**., Fundamentals of Cytology-McGraw Hill Company.
- 7. Pijushroy .,2010,Plant Anatomy,New Central Book Agency,Put Lit.,New Delhi.
- 8. P.S. Verma & V.K. Agarwal., (2016-Reprint)-Cell Biology, Genetics, Molecular

Biology, Evolution and Ecology, S. Chand Publishing Company Pvt Ltd, New Delhi.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

https://study.com/academy/lesson/symbiotic-relationships-mutualism-commensalism-amensalism.html

https://www.khanacademy.org/science/biology/ecology/intro-to-ecosystems/a/energy-flow-primary-productivity

(For the candidates admitted from the Academic year 2021 –2022 onwards)				
COURSE	B.Sc. Biotechnology			
SEMESTER	I			
CORE PRACTICAL I	I			
PAPER CODE	21UBTP01			
TITLE OF THE PAPER	Lab In Cell Biology			
HOURS/WEEK	3			
NO. OF CREDITS	3			

COURSE OUTCOME

On successful completion of this course, students should be proficient to

Course No	Course Outcome Details	Knowledge level
CO1	To introduce an fundamentals of cell biology principles and techniques	K2
CO2	basic techniques and to teach students the instrument micrometry ,microscopes	K2
CO3	To give hands on cell biology experiments-cell counting and mounting plant and animal cells	K2
CO4	Prepare permanent slides -muscle cells sperm cells and cardiac muscle	K3
CO5	Prepare slide for Meiosis in grasshopper testis /flower buds	К3

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S strong; M-medium; L-low

- 1. Microscopes and its parts.
- 2. Micrometry Stage and Ocular Micrometer.
- 3. Cell Counting Haemocytometer.
- Mounting epithelium and observing living animal and plant cells using vital staining.
- 5. Mitosis in Onion root tip squash.
- 6. Meiosis in grasshopper testis / flower buds.
- 7. Preparation of Permanent Slides Muscle cells.
- 8. Observation of Permanent Slides Cardiac muscle, Sperm cell
- 9. Staining of macromolecules Carbohydrates and Lipids.
- 10. Microtomy (Demo).

WEB LINKS

https://www.bjcancer.org/Sites OldFiles/ Library/UserFiles/pdf/Cell Biology Laboratory Manual.pdf

https://sjce.ac.in/wp-content/uploads/2018/04/Cell-Biology-Genetics-Laboratory-Manual-17-18.pdf

SECOND SEMESTER

(For the candidates admitted from the Academic year 2021 –2022 onwards)				
COURSE	B.Sc. Biotechnology			
SEMESTER	II			
CORE Theory	II			
PAPER CODE	21UBT02			
TITLE OF THE PAPER	Genetics			
HOURS/WEEK	5			
NO. OF CREDITS	4			

LEARNING OBJECTIVES

The main objectives of this course are to:

Understand on Historical introduction to Genetics and genetic materials

Understanding the concept and principles of genetics exchanges and

Its expression in host and to provide an idea about gene regulations and its control

COURSE OUTCOMES

On the successful completion of the course, student will be able to:

Course No	Course Outcome Details	Knowledge level
CO1	Obtain acquaintance on historical overview of microbial genetics and geneticMaterials	K2
CO2	Comprehend the concept of replication of genetic materials	К2
CO3	Understand about regulation of gene expression and mutation	K2
CO4	Grasp the Basic of genetics and their role	К3
CO5	Gain knowledge on mutation	К3

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

UNITI

History of Classical and Modern Genetics, Concept and organization of genetic material in bacteria ,Plant and Animal, structure ,types, forms and functions of DNA and RNA. Genetic model organisms and significance (*E. Coli, Arabidopsis thaliana, Coenorhabditis elegans*).

UNIT II

Mendelian inheritance, Non-Mendelian inheritance, Linkage, Crossing over, Chromosomal theory of inheritance, Sex linked and Sex limited inheritance. Natural gene transfer methods in bacteria.

UNIT III

Fine structure of genes, Genetic code, Structural and numerical alterations of chromosome deletion, Inversion, Duplication, Translocation. Mutations - (Spontaneous and Induced), mutagens Biochemical basis of mutation.

UNIT IV

Ploidy – Euploidy and Aneuploidy, Inborn Genetic disorders, Inherited single gene disorders.

UNIT V

Cytogenetics, Human Karyotyping, Banding techniques, Human Genetic diseases, Gene theraphy, Pedigree analysis.

REFERENCE BOOKS

- 1. Robertis et al.,1995 8th edition.cell and molecular biology-Waverly publication.
- 2. **E.J.Gardener,M.J.Simmonsand D.P.Snustad**, Principles of genetics-John Wiley&sons publications.
- 3. **Strickberger, M.W.,** 1997.4th Edition. Genetics-Printice hall
- 4. **Alberts** .,2002.Molecular biology of the cell-Garland publications,4th edition.
- 5. Ajoy Paul., 2011. Text Book of Genetics -Books and Allied (P)Ltd, Kolkata,3rd Edition

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

https://www.khanacademy.org/science/biology/classical-genetics/chromosomal-basis-of-genetics/a/linkage-mapping

https://study.com/academy/lesson/genetic-structure-of-human-populations-definition-lesson-quiz.html

(For the candidates admitted from the Academic year 2021 –2022 onwards)				
COURSE	B.Sc. Biotechnology			
SEMESTER	II			
SBEC – 1	1			
PAPER CODE	21UBTS01			
TITLE OF THE PAPER	Bioinstrumentation			
HOURS/WEEK	2			
NO. OF CREDITS	2			

LEARNING OBJECTIVES

The main objectives of this course:

- The student should have understood the analytical techniques in the field of Biotechnology
- To make the students to understand the basic principles of Bioanalytical instruments

COURSE OUTCOMES

On the successful completion of the course, student will be able to:

Course No Course Outcome Details Knowledge	evel
--	------

CO1	Demonstrate the basics of instrumentation by analysis	К2
0.0.1		
CO2	Exemplify the structure of atoms and molecules by using the principles of Spectroscopy	К2
CO3	Evaluate by Separating and Purifying the components	К2
CO4	understand the need and applications of imaging techniques	К3
CO5	categorize the working principle and applications of fluorescence and radiation based techniques	К3

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

UNIT-I

Beer Lambert's law - Colorimeter and its applications. Spectrophotometer-Principle and its applications- Types of Spectrophotometer- UV, visible, Infrared Spectrophotometer.

UNIT-II

Principle and working of pH meter. Electrophoresis - Principle and its applications - Types of electrophoresis- Agarose Gel, SDS-PAGE and isoelectric focusing.

UNIT-III

Imaging techniques -EEG, ECG, CT SCAN, MRI SCAN, X-RAY, EMG, NMR, PET.

UNIT-IV

Centrifuge - Principle and its applications - Types of Centrifuge, Chromatograpy - Principle and its applications, Types- Paper, TLC, Column, Affinity and Ion-exchange.

UNIT-V

Biosensors- Principle and its applications- Electrochemical, Thermometric, Potentiometric-Optical, Piezo-electric and Amperometric Biosensors. GM Counter, Scintillation Counter, Autoradiography, Flow Cytometry. Working principle of Autoclave, Incubator and Hot air oven.

REFERENCES:

- 1. Chromatography: Concepts and Contrasts- 1988. James Miller, John Wiley and Sons, Inc
- 2. H.V. Volkones., General Biophysics, Vol I&II
- 3. **Upadhyay.**, Biophysical Chemistry-, Himalaya Publication, Edition III
- 4. **S.Mahesh.,** 2003 Biophysics New Age International Private Ltd.
- 5. Ghatak, K.L., 2003. Techniques and Methods In Biology. PHI Learning Private Ltd. New Delhi
- 6. **Zubay.G.L.,** 1993. Biochemistry, 4th Edi. WmC. Brown Publishers.

RELATED ONLINE COURSE [MOOC, SWAYAM, NPTEL, Websites etc.]

https://www.google.com/search?client=firefox-b-d&q=Spectroscopy

https://study.com/academy/lesson/medical-imaging-techniques-types-uses.html

https://www.erswhitebook.org/chapters/principles-of-respiratory-investigation/imaging-techniques

(For the candidates admitted from the Academic year 2021 –2022 onwards)				
COURSE	B.Sc. Biotechnology			
SEMESTER	II			
CORE PRACTICAL - II	II			
PAPER CODE	21UBTP02			
TITLE OF THE PAPER	LAB IN GENETICS			

HOURS/WEEK	3
NO. OF CREDITS	3

LEARNING OBJECTIVES

The main objectives of this course are to:

- To teach students the concept of Mitosis and visualize the sex chromatin under the microscope.
- To give hands on experience in quantification of important biological constituents of cell.

COURSE OUTCOMES On the successful completion of the course, student will be able to

Course No	Course Outcome Details	Knowledge level
CO1	Successfully quantify the important biological constituents of cell.	К2
CO2	Analyze the sex chromatin present in different cells	К2
CO3	. Examine and evaluate the stages of Mitosis	K2
CO4	Could able to separate and interpret the mixture of components	К3
CO5	Prepare and examine genetic model organism	К3

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S

CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

- 1. Mendel's law of genetics Mono and Dihybrid crosses (Demo).
- 2. Rearing morphology of Drosophila (Mutant eye identification).
- 3. Observation of Genetic model organisms (*Arabidopsis thaliana* and *Coenorrabditis elegans*)Permanent slides.
- 4. Isolation of spontaneous mutant cells.
- 5. Isolation of petite mutant yeast cell.
- 6. Identification of Barr body (Buccal epithelium smear).
- 7. Preparation of polytene chromosomes (Chironomus larvae salivary gland)- squash preparation.
- 8. Staining of DNA and RNA Methyl green pyronin **WEB LINKS**<u>www.slideshare.net/TapeshwarYadav1/clinical</u> www.niddk.nih.gov/research-funding/at-niddk/labs.

THIRD SEMESTER

(For the candidates admitted from the Academic year 2021 –2022 onwards)						
COURSE	B.Sc. Biotechnology					
SEMESTER	III					
CORE THEORY	III					
PAPER CODE	21UBTP02					
TITLE OF THE PAPER	GENERAL MICROBIOLOGY					
HOURS/WEEK	5					
NO. OF CREDITS	4					

LEARNING OBJECTIVES

The main objectives of this course are:

- 1. To appreciate the efforts of the Scientists for the development of Microbiology and Microscopes.
- 2. To equip the students with the real knowledge of working with different types of Microbes. To understand the variety of microorganisms and to analyze their true potential

COURSE OUTCOMES

On the successful completion of the course, student will be able to:

	Knowledge level
Course Outcome	
Details	
Remember and recall the historical events which paved the development of different types of microscopes.	К2
Understand and differentiate the different types of microbes	К2
. Analyze the media composition and grow the desired microbe	К2
Apply the knowledge to enumerate the microorganisms	К3
Evaluate the success of understanding the viruses	К3
	Details Remember and recall the historical events which paved the development of different types of microscopes. Understand and differentiate the different types of microbes Analyze the media composition and grow the desired microbe Apply the knowledge to enumerate the microorganisms from natural environment.

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

.

Definition and Scope of Microbiology. History and Recent Developments, Contribution of Leeuwenhoek, Louis Pasteur, Robert Koch, Elie Metchinikoff, Edward Jenner and Alexander Flemming. Spontaneous and Biogenesis of Microbiology.

UNIT II

Microscopy-Light Microscopy, Bright field, Dark field, Phase contrast, Differential Interference contrast microscopy, Fluorescence and Electron microscopy. Stain and Staining techniques- Simple, Differential (Gram and Acid fast) and Special Staining (Endospore ,Capsular).

UNIT III

Ultracellular structure of prokaryotic cell structure and functions, Bacterial cell wall and its composition, Flagella, Pili and Capsule. Structure and functions of Cyanobacteria.

UNIT IV

Sterilization-Physical and Chemical methods, Culture media and its types, Microbial growth – Growth curve, Measurement and factors affecting growth, Pure culture techniques, Anaerobic culture, Preservation of Cultures.

UNIT V

Antimicrobial Chemotherapy- Antibiotics and Types-Mode of Action-Determining the level of Antimicrobial activity. Antimicrobial Agents.

REFERENCE BOOKS

- 1. **Dubey,RC and Maheswari DK(2005)**. A Test book of microbiology. Chand & Company Ltd.,NewDehli
- 2. **Sundara Rajan S (2003)**. Collage Microbiology. Volume172. Reversed Edition, Varadhana Publication, Bangalore.
- 3 **Pelczar Tr. MJ,Chan ECS& Kreig NR (2006).**Microbiology. 5th Edition, Tata Mc Graw-Hill Companies Ltd.
- 4. **Prescott LM,JP Harely and DA Klien(2005)** Microbiology. 6th International Edition Mc Graw Hill Companies Ltd.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

https://www.microscopeworld.com/p-3658-types-of-microscopes.aspx

https://micro.magnet.fsu.edu/cells/bacteriacell.html

https://www.biotopics.co.uk/microbes/tech1.html

https://courses.lumenlearning.com/microbiology/chapter/introduction-to-microbial-biochemistry/https://en.wikipedia.org/wiki/Pathogen

(For the candidates admitted from the Academic year 2021 –2022 onwards)					
COURSE	For B.Sc. Bio-technology and Bio-Chemistry				
SEMESTER	III				
ALLIED THEORY III	ALLIED - III				
PAPER CODE	21USTA05				
TITLE OF THE PAPER	BIO-STATISTICS				
HOURS/WEEK	5				
CREDIT	4				

Learning Objectives:

➤ To introduce the applications of statistics in Bio-Technology, Bio-Chemistry and Microbiology.

Course		Knowledge level
No	Course Outcome	
	Details	

Course Outcomes:

CO1	. Understand and apply the statistical methods like measures of location, dispersion and the relationship between two variables in bio-statistics	К2
CO2	Understand test of significance	K2
CO3	Understand correlation and regression	K2
CO4	Understand measures of central tendency like meanmedian-mode	К3
CO5	Understand large and small samples in laboratory study to apply it in real life problems.	К3

The students will be able to:

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

UNIT – I Collection and Presentation of Statistical Data

Biostatistics – Definition – Types of data – Primary and secondary data – Methods of Collection of data – Sources of data in life science – Limitations and Uses of Statistics – Classification and Tabulation of data – Diagrammatic and Graphical representation of data.

UNIT – II Measures of Central Tendency

Definitions – Mean – Median – Mode – Geometric mean – Harmonic mean – Characteristics of a good average – Merits and demerits.

UNIT – III Measures of Dispersion

Range – Quartile deviation – Mean deviation and their co-efficients – Standard deviation – Co- efficient of variation – Merits and demerits.

UNIT – IV Correlation and Regression

Definitions – Types and Methods of Correlation –Karl Pearson's coefficient of correlation – Spearman's Rank correlation coefficient – Regression: Simple regression equations (two variables) – Simple Problems.

UNIT – V Test of Significance

Sampling distribution - Standard error — Test of Hypothesis: Simple hypothesis, Null hypothesis and Alternative Hypothesis — Test of significance: Large sample tests based on Mean, Differences of Means, Proportion and Difference of Proportions - Small sample test based on Mean, Difference of Means, Paired 't' test - F-test - Chi-square test.

Books for Reference:

- 1. Gupta S. P. (2001), Statistical Methods, Sultan Chand & Sons, New Delhi.
- 2. Pillai R. S. N. And Bagavathi. V. (2005), Statistics, S. Chand & Company Ltd., New Delhi.
- 3. P.S.S. Sundar Rao, J. Richard (2012). Introduction to Bio-Statistics and Research methods, Prentice Hall of India Pvt Ltd, New Delhi.
- 4. Gurumani. N (2005), An introduction to Bio-Statistics, 2nd Revised Edition, MJP Publishers.
- 5. Daniel. W. W, (1987), Bio-Statistics, John Wiley and Sons, New York.
- 6. Beth Dawson, Robert G Trapp (2004), Basic and Clinical Biostatistics, McGraw Hill, New Delhi.
- 7. Zar J, Bio Statistical Analysis, Prentice Hall, India.
- 8. Bernard Rosner, Fundamentals of Biostatistics, (8th edition), Cengage Learning, USA.
- 9. Rossi R. J (2010), Applied Biostatistics for Health Science, John Wiley, New York.
- 10. Rao C. R, Advanced Statistical Methods in Biometric Research, John Wiley, New York.

Web links:

- https://faculty.franklin.uga.edu/dhall/sites/faculty.franklin.uga.edu.dhall/files/lec1.pdf
- https://www.tutorialspoint.com/statistics/

- http://www.stat.yale.edu/Courses/1997-98/101/sigtest.htm
- ➤ http://biostat.jhsph.edu/~jleek/teaching/2011/754/lecture1.pdf
- > http://homepage.divms.uiowa.edu/~dzimmer/applied-multivariate/lecturenotesold.pdf

(For the candidates admitted from the Academic year 2021 –2022 onwards)					
COURSE	B.Sc. Biotechnology				
SEMESTER	III				
SBEC - II	II				
PAPER CODE	21UBTS02				
NITLE OF THE PAPER	DEVELOPMENTAL BIOLOGY				
MOURS/WEEK	2				
NO. OF CREDITS	2				

BJECTIVES:

To understand sequential changes from single cell organization to organ level of organization in the development of multicellular organisms.

- Students will understand the role of developmental genetics in defining biological processes.
- Students will appreciate that recent advances in molecular biology are due to our ever increasing depth of understanding of basic biological processes.
- Students will solve a variety of problems using creative thinking skills and analytical skills in the lab

COURSE OUTCOME:

On completion of the course, the student should be able to:

Course No	Course Outcome Details	Knowledge level
-----------	------------------------	--------------------

CO1	explain the molecular mechanisms that underlie animal and plant development	К2
CO2	 explain underlying developmental biology processes of sperm and egg. 	K2
CO3	 review scientific literature in the subject developmental biology critically 	K2
CO4	plan and carry out laboratory sessions as well as interpret results to examine the importance of specific genes in developmental biology processes.	К3
CO5	understands the students about sequential changes from single cell organization to organ level in the development of multicellular organisms.	К3

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

UNIT I

Spermatogenesis and Oogenesis in mammals, Menstrual cycle, Monitoring of estrus cycle, Sperm banking. Hormones involved in reproduction

UNIT II

Activation of sperm and egg- interaction of sperm and egg- Sequence of events in sperm entry- Egg surface changes. Post- fertilization changes. Embryo development.

UNIT III

Cell cleavage- pattern of cleavage- Chemical changes -Distribution of cytoplasmic substances in the egg- Metamorphosis (Insects and amphibians)-Hormone control of metamorphosis.

UNIT IV

Development of Microsporangium and Megasporangium, Pollination, Embryo-Embryo sac development and double fertilization in plants, seed formation and germination. Out line of experimental embryology.

UNIT V

Organization of shoot and root apical meristem, and development.

Leaf development and Phyllotaxy.

REFERENCES:

- **1. Gilbert, Scott's.** 10th edition (2014). Developmental biology .Sinauer Association, Inc., Publishers.
- **2. Chattopadhyay.S**. 2016. An Introduction to developmental Biology, Books are allied (P) Ltd, Kolkata. First Edition.
- 3. Bruce M Carlson, Patten's Foundation of Embryology,. Tata McGraw Hill Co.
- **4. Balinsky,B.I.,** 1981. 5th edition. An Introduction to embryology , W.B. Saunders Co., Philadephia.
- **5. Verma, P.S., Agarwal, V.K., and Tyagi.,** 1995. Chordate embryology, S. Chand & Co., New Delhi.
- 6. Berril, N.T., Karp, G., 1998. Development. Tata McGraw Hill Co., New York.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

https://www.mooc-list.com/course/developmental-biologysaylororg

(For the candidates admitted from the Academic year 2021 –2022 onwards)					
COURSE B.Sc. Biotechnology					
SEMESTER	III				
NMEC -1	I				
PAPER CODE	21UBTN01				
TITLE OF THE PAPER	CONCEPT OF BIOTECHNOLOGY				
HOURS/WEEK	2				
NO. OF CREDITS	2				

LEARNING OUTCOMES

To provide students with an introduction to genetics, molecular biology, tools and applications of biotechnology.

To provide a strong foundation essential for subjects in the later years of the Biotechnology.

COURSE OUTCOMES

Students who successfully complete this unit will be able to:

CO1	Describe the fundamental biochemical processes of cells such as ion/molecule uptake, energy transfers, metabolism and the immune system	К2
CO2	Describe the fundamentals of cell division and genetics, including the role of DNA as genetic material	К2
CO3	Describe the basic principles and techniques used for the study and manipulation of DNA	K2
CO4	Appreciate the application of biotechnology in diverse areas such as health and medicine, agriculture and/or the environment	К3
CO5	 understands the students about sequential changes from single cell organization to organ level in the development of multicellular organisms. 	К3

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

Scope of Biotechnology. History of Biotechnology: Conventional and Modern Biotechnology – Biotech industries. Biotechnology Tree. Strategies of gene cloning.

UNIT II

Tools used in gene cloning – Restriction endonucleases – Types – Features. Ligases – Linkers, adaptors and homopolymer tails. Modifying enzymes.

UNIT III

Vectors – Properties of good Vector.Constructed plasmids- pBR322. Cosmid vectors, Animal vectors- SV40. Plant vectors- Ti derivatives.

UNIT IV

Introduction of genes – Vector mode – transformation and transfection. Vector less mode – Biolistics, Electroporation, Microinjection.

UNIT V

Selection of recombinants. Marker techniques- PCR, RFLP, RAPD and blotting techniques REFERENCES:

- 1. **Principles of Gene Manipulation Old & Primrose**, (1989), 3rd edition
- 2. **Biotechnology**, Satyanarayana. U, (2008), Books and Allied (p) Ltd
- 3. **Biotechnology and Genomics**, Gupta P.K:(2004) Rastogi publication.
- 4. **Gene cloning and DNA analysis** Brown, T.A(1996),. Blackwell science, Osney Mead, Oxford.
- 5. **Atext book of Biotechnology**, Dubey, R. C. (2007), S.Chand & Company Ltd. New Delhi.
- 6. **Biotechnology**, Singh, B. D (2004). Kalyani Publishers, New DelhiNote: This paper is offered for other major students.

WEB LINKS

https://www.mooc-list.com/tags/biotechnology

https://onlinecourses.swayam2.ac.in/cec20 bt07/preview

(For the candidates admitted from the Academic year 2021 –2022 onwa					
COURSE	B.Sc. Biotechnology				
SEMESTER	III				
CORE PRACTICAL - III	III				
PAPER CODE	21UBTP03				
TITLE OF THE PAPER	LAB IN MICROBIOLOGY				
HOURS/WEEK	3				
NO. OF CREDITS	3				

LEARNING OBJECTIVES

The main objectives of this course are to:

To introduce an fundamentals of cell biology and microbiology techniques

To teach students the basic techniques and instrument principles in biotechnology

To give hands on microbiology and cell biology experiments.

COURSE OUTCOMES

On the successful completion of the course, student will be

a

b

1

e

Course No		Knowled
t	Course Outcome Details	
co1	Be aware of the laboratory rules and regulations	
•		
CO2	Understand the importance, evolution and diversity of cells and preparation of	
	Buffers	
CO3	Learns to visualize the cells by employing different types of microscopes	
CO4		
	Bring in the concepts of microbial culturing techniques	
CO5		
003	Analysis of phenotypic characterization of known and unknown	
	microbes and	
	basic instruments	

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

- 1. Media Preparation (Solid & Liquid, Semi Solid) and Sterilization.
- 2. Isolation & Enumeration of Microorganism from water and Soil.
- 3. Types of culture method Streak plate, Pour plate, Stab & Slant preparation.
- 4. Measurement of Growth rate of bacteria Turbidometric method.
- 5. Staining Techniques–Gram's staining, Spore Staining, Lacto phenol Cotton Blue Staining.
- 6. Hanging drop technique (Motility Test).
- 7. Characterization of microorganisms -IMVIC tests.
- 8. Microscopic slide preparation –Fungi & Bacteria.
- 9. Antibiotic sensitivity Test Kirby Bauer method

REFERENCE BOOKS

Benson HJ. Microbiological applications: a laboratory manual in general microbiology. WCB/McGraw-Hill; 1998

Cullimore DR. Practical manual of groundwater microbiology. CRC Press; 2007 Dec 17

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

 $\frac{https://www.azolifesciences.com/article/What-is-a-pH-Meter-and-How-Does-it-Work.aspx}{}$

FOURTH SEMESTER

(For the candidates admitted from the Academic year 2021 –2022 onwards)						
COURSE	B.Sc. Biotechnology					
SEMESTER	IV					
CORE THEORY-IV	IV					
PAPER CODE	21UBT04					
TITLE OF THE PAPER	MOLECULAR BIOLOGY					
HOURS/WEEK	6					
NO. OF CREDITS	4					

LEARNING OUTCOME:

Upon successful completion of the Molecular & Cellular Biology undergraduate curriculum, students will be able to:

of Transcription and processing of transcripts, RNA editing.

- 1. Molecular Events of understand and appreciate the diversity of life as it evolved over time by processes of mutation, selection and genetic change.
- 2. explain that the growth, development, and behavior of organisms are activated through the expression of genetic information in context.
- 3. Summarize that biological systems grow and change by processes based upon chemical transformation pathways and are governed by the laws of physics.
- 4. execute quantitative analysis to interpret biological data.
- 5. construct and utilize predictive models to study and describe complex biological systems.
- 6. apply concepts from other sciences in order to interpret biological phenomena.
- 7. communicate biological concepts and understanding to members of a diverse scientific community as well as to the general public.

COURSE OUTCOMES

Course Outcome Details	Knowledge level
Learning structural levels of nucleic acids- DNA and RNA and genome organization in prokaryotes and eukaryotes	К2
Understanding the concept of Gene and the gene architecture	K2
Learns to visualize the cells by employing different types of microscopes	K2
`Overview of the central dogma of life and various molecular events Learning molecular events in the DNA replication and role of different enzymes	К3
Molecular Events Translation leading to protein synthesis and Post translational modification.	К3
	Learning structural levels of nucleic acids- DNA and RNA and genome organization in prokaryotes and eukaryotes Understanding the concept of Gene and the gene architecture Learns to visualize the cells by employing different types of microscopes Overview of the central dogma of life and various molecular events Learning molecular events in the DNA replication and role of different enzymes Molecular Events Translation leading to protein synthesis and Post

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

UNIT I

Central dogma: DNA as a genetic material. Modern concept of gene organization. DNA replication in prokaryotes and Eukaryotes, Enzymes and proteins involved in replication. DNA repair mechanisms –Light and Dark.

UNIT II

Transcription & transcriptional control: (Prokaryotes and eukaryotes), Initiation, elongation, termination, promoter sequences, TATA box, Hogness box, CAAT box, Enhancers, upstream activating sequences. Post transcriptional modifications, splicing.

UNIT III

Translation: Prokaryotic and eukaryotic translation, Initiation, elongation and termination, Co and post translational modifications of proteins. Import into nucleus, mitochondria and chloroplast. Genetic code: Codon, Anti-codon,

UNIT IV

Control of gene expression at transcription and translation level: regulating the expression of phages, viruses, prokaryotic and eukaryotic genes, Regulation of gene expression-Operon concepts (*lac&trp*). Recombination – Homologous and Non – homologous recombination.

UNIT V

Biology & Genetics of cancer: Genetic rearrangements in progenitor cells, oncogenes, tumor suppressor genes (P53 and PRB genes), virus-induced cancer, metastasis, interaction of cancer cells with normal cells. Protein Microarray.

REFERENCES:

- 1. T.A. Brown., Molecular Biology, Labfax, Bioscientific publishers Ltd, Oxford.
- 2. **J.D. Watson, N.H. Hopkins, J.W. Roberts, J.A. Steltz & A.N. Weiner**. Molecular Biology of gene (4th edition) The Benjamin/Cummings publications C Inc. California.
- 3. Principles of Gene Manipulation By R.W. Old & S.B. Primrose, Blackwell publication. WEB LINKS (MOOC,SWAYAM,NPTL) https://www.mooc-list.com/tags/molecular-biology

https://onlinecourses.swayam2.ac.in/cec20 ma13/preview

(For the candidates admitted from the Academic year 2021 –2022 onwards)					
COURSE B.Sc. Biotechnology					
SEMESTER IV	IV				
NMEC-2	II				
PAPER CODE	21UBTN02				

TITLE OF THE PAPER	BIOTECHNOLOGY FOR HUMAN WELFARE
HOURS/WEEK	2
NO. OF CREDITS	2

LEARNING OBJECTIVES

The goal of biotechnology is to produce, drugs, vaccine, transgenic and plants by using living organisms such as bacterial cells, yeast, mammalian cells, etc.,

The course is designed to give an idea about the role of biotechnology in relation to Human Welfare i.e Sericulture. Aquaculture. Vermiculture, Mushroom technology

Biofertilizers. Biopesticides. Biorepellants, Pest control and management. Biomass (SCP). Bioplastics. Bioweapons

COURSE OUTCOMES

Students who successfully complete this unit will be able to

Course No		Knowledge level
	Course Outcome Details	
CO1		K2
	Describe the basic principles and techniques used for the study and manipulation of DNA	

CO2	Appreciate the application of biotechnology in diverse areas such as health and medicine, agriculture and/or the environment	K2
CO3	Conduct and/or observe a variety of laboratory exercises where some of the above theoretical knowledge is applied to practical situations	K2
CO4	Demonstrate the ability to work safely and communicate effectively	K3
CO5	Demonstrate production of vaccine ,antibiotics	К3

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

UNIT I

Sericulture. Aquaculture. Vermiculture, Mushroom technology.

UNIT II

Biofertilizers. Biopesticides. Biorepellants, Pest control and management. Biomass (SCP). Bioplastics. Bioweapons.

UNIT III

Bio dyes, Bio fuels, - Biodiesel & Biogas. Bioindicators. Biodegradation-Role of GMO's.

UNIT IV

Production of Penicillin, Recombinant Vaccines (HBV). Recombinant Insulin. Plantibodies. Vaccines in animal cells, Gene therapy.

UNIT V

Transgenic animal and their applications – Mice, Sheep and Fish. Transgenic plants and their applications – BT Cotton, Flavr – Slavr tomato and Golden rice.

REFERENCE

- 1. Animal Biotechnology, M.M. Ranga, (2000), Agrobios (INDIA),
- 2. Introduction to Plant Biotechnology Chawla, (2003) (2nd edn) Oxford and IBH publishers.
- 3. Biotechnology, Satyanarayana. U, (2008) Books and allied (p) Ltd.
- 4. Industrial Microbiology A.H. Patel, MacMillan Publishers, 2005
- 5. A text book of Biotechnology, R.C. Dubey, (2001), Rajendra Printer. New Delhi.
- 6. Environmental Biotechnology. A.K. Chatterji. Third edition. PHI Learning Pvt Ltd. New Delhi. Web link: (MOOC,SWAYAM,NPTEL) https://www.mooc-list.com/tags/biotechnology https://onlinecourses.swayam2.ac.in/cec20 bt03/preview

(For the candidates admitted from the Academic year 2021 –2022 onwards)						
COURSE	B.Sc. Biotechnology					
SEMESTER IV	IV					
CORE PRACTICAL – IV	IV					
PAPER CODE	21UBTP04					
TITLE OF THE PAPER	LAB IN MOLECULAR BIOLOGY					
HOURS/WEEK	3					
NO. OF CREDITS	3					

LEARNING OBJECTIVES

The main objectives of this course are to:

To teach the students concept of isolation of DNA from living organism

To give hands on experience in isolation and separation of Protein, RNA and DNA.

COURSE OUTCOMES

AT the end of this course the students able to

Course No	Course Outcome Details						
CO1	To acquire knowledge about basic molecular biology tools	К3					
CO2	To develop the skills in isolating and identifying the challenges in molecular biology related tools	К3					
CO3	To develop the skill for implementing project	К3					
CO4	Acquires skills in separation techniques	K4					
CO5	Understand the practical skills in molecular biology techniques	K4					

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S

CO5	S	L	L	L	S	L	S	S	M	S	1
-----	---	---	---	---	---	---	---	---	---	---	---

S-strong M-medium L-low

- 1. Isolation of genomic DNA from bacteria.
- 2. Separation of DNA by AGE.
- 3. Estimation of DNA (DPA method).
- 4. Isolation and purification of protein (Dialysis) Demo
- 5. Estimation of Protein (Lowry's method).
- 6. Separation of protein by SDS PAGE.
- 7. Estimation of RNA (Orcinol method).
- 8.Bacterial transformation.
- 10. Isolation of antibiotic resistant mutant

RELATED WEB LINKS

https://www.researchgate.net/publication/320508474 Molecular Biology Laboratory manual

http://www-personal.umd.umich.edu/~poelkers/OelkersMolbiolmanualUMD2016.pdf

https://vulms.vu.edu.pk/Courses/BIO203/Downloads/Manual_BIO203_Methods%20in%20Molecular%20Biology.pdf

FIFTH SEMESTER

(For the candidates admitted from the Academic year 2021 –2022 onwards)							
COURSE	B.Sc. Biotechnology						
SEMESTER V	V						
CORE THEORY	V						
PAPER CODE	21UBT05						
TITLE OF THE PAPER	PLANT BIOTECHNOLOGY						
HOURS/WEEK	6						
NO. OF CREDITS	4						

LEARNING OBJECTIVES:

- To understand various in Vitro culture techniques of Plants
- To learn gene transferring mechanisms in Plants
- Impart knowledge on basics of plant tissue culture and its requirements
- Acquire knowledge about the gene transfer techniques and applications
- Understand the genetic engineering and gene modification in agriculture
- Gain insight about valuable secondary metabolites, its production and purification
- Highlight the applications of plant biotechnology in the modern era

COURSE OUTCOMES

On the successful completion of the course, student will be able to:

Course No	Course Outcome Details	Knowledg e level
CO1	Understand scientific and technical skills on plants study	K2
CO2	Acquire knowledge on limitations and challenges in plant cell tissue culture.	K2
CO3	Know the applications of Plant Biotechnology	K2
CO4	Learn the preservative methods of cells	К3
CO5	Evaluate and discuss public and ethical concerns over the use of plant Biotechnology	К3

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

UNIT - I

PLANT TISSIE CULTURE:

Tissues culture media - Composition and its preparation. Plant Tissue Culture applications - Micropropagation, Callus culture, somatic embryogenesis, suspension culture, embryo culture, haploid culture, protoplast culture and fusion, Somoclonal variation, artificial seeds, hardening.

UNIT - II

Gene transfer:

Plant transformation technology- Ti and Ri plasmids, binary & co- integrated vector systems; viral vectors and their applications; 35S and other promoters; genetic markers-reporter genes- virulence genes- Cloning Strategies - Gene transfer methods in plants-Direct DNA transfer methods, Agrobacterium mediated nuclear transformation.

UNIT - III

Plant Genetic Engineering:

Applications of Plant Genetic Engineering – crop improvement, herbicide resistance, insect resistance, virus resistance, plants as bioreactors. Genetic modification in Agriculture - transgenic plants, genetically modified foods, ecological impact of transgenic plants.

UNIT-IV

Secondary metabolites:

Secondary metabolic pathways in plants. Industrial phytochemical products from plants - Alkaloids, Biodegradable Plastics, Therapeutic proteins, antibodies, plant vaccines, herbal drugs, bioethanol and biodiesel.

UNIT-V

Plant biotechnological application:

Extraction & purification of phyto-chemicals. phytoremediation; Green house and green home technology. Molecular pharming; Applications for producing fine chemicals, drugs, and alternative fuels, herbicide and pest resistant plants, ethical issues relating to plant breeding.

TEXT BOOKS:

- 1. Chawla, H. S. 2013. Introduction to Plant Biotechnology. 3rd edition. Oxford & IBH publishing company.
- 2. Razdan, M. K. 2002. Introduction to Plant tissue culture. 2nd edition. Oxford &IBH publishing company.

REFERENCE BOOKS:

- 1. Grierson, D. and Covey, S.V. 1988. Plant Molecular Biology. 2nd edition. Blackie Publishers.
 - 2. Bhojwan, S. S. 1996. Plant tissue culture Theory and Practice. 1st edition. Elsevier Publishers **WEB LINKS**

https://onlinecourses.swayam2.ac.in/cec21_bt03/preview_

(For the candidates admitted from the Academic year 2021 –2022 onwards)							
COURSE	B.Sc. Biotechnology						
SEMESTER IV	V						
CORE THEORY VI	VI						
PAPER CODE	21UBTP06						
TITLE OF THE PAPER	IMMUNOLOGY AND IMMUNOTECHNOLOGY						
HOURS/WEEK	6						
NO. OF CREDITS	4						

LEARNING OBJECTIVES

The main objectives of this course are to:

- This course presents the basic defense mechanism of animals
- To make the student to understood the concept immunology
- On successful completion of the subject the student should have understood:

Immunity, Antigen, Antibody, Cells of immune system and their function and regulations

COURSE OUTCOMES

On the successful completion of the course, student will be able to:

Course No	Course Outcome Details					
CO1	Design a model of Immunoglobulin/Antibodies	K2				
CO2	Describe which cell Mtypes and organs present in the immune response	K2				
CO3	Illustrate various mechanisms that regulate immune responses and maintain Tolerance	K2				
CO4	Exemplify the adverse effect of immune system including Allergy,	К3				
CO5	hypersensitivity and autoimmunity	К3				

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

UNIT I

History of the immune system, Innate and Acquired immunity. Haematopoiesis. Cells and organs of the immune system.

UNIT II

Nature & biology of Antigen & super antigens. Haptens, Mitogens, Adjuvants. Humoral response – B cell activation and proliferation. Cell mediated immunity – T cell receptors and its **activation.**

UNIT III

Immunoglobulins – Structure and functions. Antigen – Antibody reactions – Agglutination, precipitation, RIA, ELISA, FACS and Immunopanning. Hybridoma technology & CCA. Organization and expression of immunoglobulin genes. Antibody Engineering & Finger Printing.

UNIT IV

Cytokines: Types and function, Complement- Properties and activation pathways, Classical, Lectin & Alternative pathway. Major Histocompatability Complex. Immunological tolerance. Immunity to infectious agents (intra cellular parasites, helminthes viruses).

UNIT V

Transplantation immunology. Hypersensitivity and its types. Autoimmunity, Immune senescence, Cancer immunology, Vaccines. Immunotherapeutics. Immuno enhancing technology.

REFERENCES:

- 1. Kubey, J. 1993. Immunology Freeman and company.
- 2. Janeway, C.A., Immuno-biology Paul Travers1994.
- 3. Seemi Farhat Basir., Text Book of Immunology by. First edition. PHI Lrarning Pvt Ltd, New Delhi.
- 4. Madhavee Latha, P., A Text Book of Immunology, First Edition. S.Chand & Company Ltd, New Delhi.
- 5. Ajoy Paul.. Textbook of Immunology
- 6. Rajasekara pandian M and Senthil kumar B., 2007. Immunology and Immunotechnology. (2007), Panima publishing corporation, New Delhi.

(For the candidates admitted from the Academic year 2021 –2022 onwards)					
COURSE	B.Sc. Biotechnology				
SEMESTER V	V				

CORE THEORY VII	VII
PAPER CODE	21UBT07
TITLE OF THE PAPER	GENETIC ENGINEERING
HOURS/WEEK	5
NO. OF CREDITS	4

COURSE OBJECTIVE

The main objectives of this course are to:

- 1. To gain knowledge about the importance of gene manipulation and gene transfer technologies
- 2. To learn the concept of vectors and expression systems and methods of selection

To understand and describe the concept of Hybridization technique

COURSE OUTCOME

On the successful completion of the course, student will be able to:

Course No	Course Outcome Details	Knowledg e level
CO1	Acquaint with the vocabulary involved in molecular cloning strategies and techniques used to probe DNA for specific genes of interest	K2
CO2	Apprehend with the tools and techniques in rDNA technology and types of Vectors	K2
CO3	Relate the role of restriction and modifying enzymes in recombinant DNA Technology	K2
CO4	Explore the techniques involved in construction of genomic DNA library and cDNA library	К3
CO5	Design the protocols for analyzing gene transfer methods and to explore knowledge on hybridization based markers	К3

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S

CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

UNIT-I

History, scope and recent developments in Genetic Engineering; guidelines; Molecular tools in genetic engineering- Restriction enzymes: Endo & Exonucleases, Ligase. Modifying enzymes- DNA & RNA polymerase, reverse transcriptase, terminal transferase; nucleases (DNases, RNases, S1) T4 polynucleotide kinase, Alkaline Phosphatase and ligase (E.coli & T4).

UNIT-II

Ligation (cohesive & blunt end ligation) – linkers & adaptors. Cloning vectors: plasmid - definition, properties and types. pUC19 & pBR322- phage vectors (λ & M13), Cosmid vectors, Shuttle and expression vectors; YAC (S.cerevisiae as a model)& BAC (E.coli).

UNIT-III

Screening and selection of recombinants; Gene transfer methods, PCR - Principle, Types and applications.

UNIT-IV

Hybridization techniques: Probes(radio active & non radio active), detection. PCR - Principle, Types and applications; Labeling of DNA- Nick translation, Random priming method & labelling by primer extension. Construction of genomic & c DNA libraries. Gene expression in bacteria, yeast, insects, plant & mammalian cells

UNIT-V

Chromosomes engineering, targetted gene replacement, gene editing, & silencing. Site directed mutagenesis.

References:

- 1. Primrose, S.B. and Twyman, R.M., 2006. Principles of Gene Manipulation and Genomics 7th Edition. Blackwell Publishing Company.
- 2. Dubey. R.C. A Text Book of Biotechnology. S. Chand & Co Ltd, New Delhi.
- 3. Brown T.A., 2008. Genomes. 3rd Edition. New York: Garland Publishing Co. New York: Garland Science.
- 4. Tvan R.S., 1997. Recombinant gene expression protocols. Human Press Inc., Tokowa
- 5. Satyanarayana. U, 2008. Biotechnology, Books and Allied (p) Ltd

WEB LINK: (MOOC,SWAYAM,NPTEL) https://onlinecourses.nptel.ac.in/noc19 bt15/preview

(For the candidates admitted from the Academic year 2021 –2022 onwards)						
COURSE	B.Sc. Biotechnology					
SEMESTER -V	V					
SBEC-III	III					
PAPER CODE	21UBTS03					
TITLE OF THE PAPER	NANOBIOTECHNOLOGY AND BIOINFORMATICS					
HOURS/WEEK	2					
NO. OF CREDITS	2					

LEARNING OBJECTIVES

- To learn the application of nano biotechnology in biological system
- To help the students to unsderstand about nano material and nano medicines
- To understand about application of bioinformatics **COURSE OUTCOME**

The student will develop a fundamental knowledge of nanomaterials.

Course No	Course Outcome Details				
CO1		K2			
	The student will demonstrate a basic understanding of the length scale that defines nano for metal and semiconductor materials.				
CO2	The student will demonstrate an understanding of the challenges on safe nanotechnology	K2			
CO3		K2			
	A student will develop a fundamental knowledge of DNA databank, protein data bank and sequence alingment tool				
CO4	Acquire knowledge on handling biological databases	К3			
CO5	Understand the practical skills in synthesis of nanoparticles	К3			

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

UNIT I:

Nanobiology – concepts, definitions, prospects; nanoparticles – size, shape, properties. Bionanoparticles – nanostarch, nano composites – dendrimers.. Types of biomaterials. Biodegradable polymers.

UNIT II:

Methods of nanobiotechnology – Analysis of bimolecular nanostructures by Atomic Force Microscopy, Scanning Probe Electron Microscopy. Nanofabrication - lithography. Drug nanoparticles -structure and preparation ,Liposomes, Cubosomes and hexosomes. Lipid based nanoparticles-liquid nano dispersion, solid liquid nanoparticles **UNIT III:** Nanotubes, Nanorods, Nanofibers and Fullerenes for nanoscale drug. Bio nanoelectronics. Applications of nanobiotechnology in medicine, drug designing and cancer treatment. Medical, social and ethical considerations of nanobiotechnology.

UNIT IV:

Bioinformatics - definition, introduction, history and scope. Databanks – Gen Bank, PDB. Literature DataBanks – PubMed. Biological databases including both proteins and nucleic acids – sequence – EMBL, DDBJ. Structural databases – CATH, SCOP. Specialized database – genome data base, EST.

UNIT V:

Sequence Alignment based on Matrices (BLOSUM and PAM), tools for sequence alignment – BLAST, FASTA. Clustal W. Phylogenetic analysis – WPGMA, UPGMA methods.

WEB LINKS: (MOOC, SWAYAM, NPTEL) https://www.mooc-

list.com/tags/nanotechnology

https://onlinecourses.nptel.ac.in/noc19_bt28/preview

https://onlinecourses.swayam2.ac.in/cec21_bt04/preview

(For the candidates admitted from the Academic year 2021 –2022 onwards)						
COURSE	B.Sc. Biotechnology					
SEMESTER V	V					
CORE PRACTICAL – V	V					
PAPER CODE	21UBTP05					
TITLE OF THE PAPER	LAB IN PLANT BIOTECHNOLOGY					
HOURS/WEEK	3					
NO. OF CREDITS	4					

LEARNING OBJECTIVE

The main objectives of this course are to:

□ To teach students the latest techniques and principles in Plant Tissue Culture □ To give hands on experience in Plant Tissue Culture technique

COURSE OUTCOME

Understanding the concepts and principles of **Plant tissue culture**.

Course No	Course Outcome Details						
	Learning the techniques of sterilization and monitoring method of sterilization.	K2					
	Learning different pathways of plant regeneration under in vitro conditions - organogenesis and somatic embryogenesis	K2					
CO3	Techniques of establishing cell suspension culture	K2					
CO4	Isolation of genomic DNA from plant materials	К3					
CO5	Isolation and analysis of chloroplast from plant cells	К3					

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

- 1. Plant Tissue Culture Media Preparation.
- 2. Explant Preparation.
- 3. Establishment and maintenance of callus culture.
- 4. Establishment and maintenance of suspension culture.
- 5. Isolation of protoplasts using enzymatic method and viability checking
- 6. Synthetic seeds (Entrapment method).
- 7. Isolation of genomic DNA from plant.
- 8. Isolation of Chloroplast from Plant cell.
- 9. Kitchen garden Preparation and Green House Visit (Demo).
- 10. Qualitative analysis of Phytochemicals from Crude Plant Extracts.

WEB LINKS

https://www.grin.com/document/265322

https://www.springer.com/gp/book/9783642817861

For the candidates admitted from the Academic year 2021 –2022 onwards)						
COURSE	B.Sc. Biotechnology					
SEMESTER V	V					
CORE PRACTICAL – VI	VI					
PAPER CODE	21UBTP06					
TITLE OF THE PAPER	LAB IN GENETIC ENGINEERING AND IMMUNOLOGY					
HOURS/WEEK	3					
NO. OF CREDITS	4					

LEARNING OBJECTIVES

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
Cos	101	102	100	10.	100	100	10,	100	10)	1010
										i

The main

objectives of this course are to:

☐ To teach students the latest techniques and principles in Immunology and genetic engineering

To give hands on experience in immunological techniques and genetic engineering COURSE OUTCOMES

On the	CO1	S	L	M	M	S	M	L	S	M	S
completion of student will be	CO2	S	L	M	M	S	M	L	S	M	S
	CO3	S	L	M	M	S	M	L	S	M	S
	CO4	S	L	S	S	S	S	L	S	M	S
	CO5	S	L	L	L	S	L	S	S	M	S

successful the course, able to:

Course No	Details	owl edg e leve l
CO1	Understand the practical skills in Immunology K2	
CO2	Acquire skills in genetic engineering K2	
CO3	Examining and analyzing the results involved in immune techniques and genetic engineering K2	
CO4	Developing and applying the recent technology involved in diagnostic K3 techniques of immunology and genetic engineering	
CO5	Understand skills in transformations techniques K3	

Mapping with programme outcomes

S-strong M-medium L-low

IMMUNOLOGY

- 1. Preparation of plasma and serum.
- 2. Blood cell analysis total count, differential count.
- 3. Agglutination tests:
 - a. ABO Blood grouping.
 - b. WIDAL test.
 - c. ASO test.
 - d. Pregnancy test.
 - e. RPR test.

4. Precipitations:

- a. Radial immunodiffusion.
- b. Double immnodiffusion.
- c. Counter Current immune electrophoresis.

5. DOT-ELISA

II GENETIC ENGINEERING

- 6. Isolation of plasmid DNA and size analysis.
 - 7. Restriction digestion.
 - 8. Ligation.
- 9. Transformations of recombinants in *E. coli* (Preparation of competent cells).
 - 10. PCR amplification (demo).

SIXTH SEMESTER

(For the candidates admitted from the Academic year 2021 –2022 onwards)						
COURSE	B.Sc. Biotechnology					
SEMESTER VI	VI					
CORE THEORY VIII	VIII					
PAPER CODE	21UBT08					
TITLE OF THE PAPER	ANIMAL BIOTECHNOLOGY					
HOURS/WEEK	6					
NO. OF CREDITS	5					

LEARNING OBJECTIVES

To provide a basic understanding of animal biotechnology and its applications.

COURSE OUTCOMES

In the successful completion of the course, students will be able to:

Course No	Course Outcome Details						
CO1	To develop an understanding on basic pattern of animal cell culture and controlling characters						
CO2	Acquire knowledge on handling animal cell culture and their applications	K2					
CO3	Understand the gene transfer technology , transgenic animal and stem cell technology	K2					
CO4	Emphasize techniques on fertilization in animals and its development						
CO5	Highlight the applications of animal biotechnology in various fields						

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

UNIT-I

Animal cell culture media and reagents

Animal cell culture basics- Preparation of culture media- Role of carbon dioxide, serum and growth factors in cell culture, Types of cell culture media, Ingredients, Physiochemical properties, Antibiotics, growth supplements, Fetal bovine serum; Serum free media. Conditioned media, other cell culture reagents, Preparation and sterilization of cell culture media and other reagents.

UNIT-II

Animal cell culture

Principles of sterile techniques and cell propagation; Primary cell culture, secondary cell culture, continuous cell lines, suspension cultures - Chemically defined and serum free media for cell culture Contamination and eradication, cryopreservation of animal cells - Tissue engineering and organotypic culture, Cytotoxicity and viability assays.

UNIT-III

Gene transfer technology

Gene transfer in cells; physical, chemical and biological methods. Production of native and recombinant proteins in animal cell. Hybridoma technology and its applications- gene targeting, silencing and knock-out. Gene transfer technology in animals. Production of transgenic animals.

UNIT-IV

Fertilization in animals

Fertilization in animals: Blastulation, gastrulation, early embryonic development - fate map. Conventional methods of improvement of animal live stock: artificial insemination, in vitro fertilization, embryo culture, embryo sexing, splitting and cloning. Stem cell technology.

UNIT-V

Biotechnological application

Biotechnology of silk worm - commercial production of silk, Baculovirus in Biocontrol, Integrated pest management. Manipulation of Growth hormone - somatotropic hormone- Thyroid hormone; Manipulation of lactation —Lactogenesis- galactopoiesis - Manipulation of wool growth.

TEXT BOOKS:

- 1. Freshney.R.I, "Culture of Animal cells: A manual of basic technique", Fifth edition, Wiley Publishers, 2010.
- 2. Ramadass.P, "Animal Biotechnology: Recent concepts and Developments", MJP Publications, India, 2008.

REFERENCE BOOKS:

- 1. Rastogi, V. 2001. Developmental Biology. 1st edition. Kedarnath Ramnath Publishers.
- 2. Leach.C.K, In vitro cultivation of Animal cell, Butterworth and Heinnmamm Ltd., 1994.

WEB LINKS https://onlinecourses.nptel.ac.in/noc20 me04/preview https://www.blinkcourse.com/Animal-Physiology-p-8983

(For the candidates admitted from the Academic year 2021 –2022 onwards)						
COURSE	B.Sc. Biotechnology					
SEMESTER VI	VI					
CORE THEORY -IX	IX					
PAPER CODE	21UBT09					
TITLE OF THE PAPER	PROTEOMICS AND GENOMICS					
HOURS/WEEK	6					
NO. OF CREDITS	4					

LEARNING OBJECTIVES

To provide better knowledge of molecular profiling of genes and proteins for its analysis.

COURSE OUTCOMES

In this **course**, **students** will develop the molecular skills, knowledge about the handling of instruments for different applications.

Course No	Course Outcome Details	Knowledg e level
CO1	Know the application of proteomics and genomics	К2
CO2	Acquire knowledge on DNA sequencing using PCR	K2
CO3	Understand the purification of proteins	K2
CO4	Acquire knowledge on mass spectroscopy	К3
CO5	Highlight the applications of whole genome shote gun method and blotting techniques	К3

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

UNIT I

Studying the Genome: Genetic Mapping-Markers for Genetic Mapping; RFLP, SSLP - VNTR's, STR's, SNP's; Physical Mapping - In situ hybridization, Sequence Tagged Sites Mapping.

UNIT II

Determination of nucleotide sequence: Chemical degradation method, Sanger's dideoxynucleotide synthetic method. Direct DNA sequencing using PCR, Sequencing by conventional shotgun method, Whole genome shot gun method.

UNIT III

ORF scanning — Codon bias, Exon-Intron boundaries - Exon trapping, Gene location — Southern and Northern blotting hybridization, Zoo blotting. Studying a transcriptome — Microarray or chip analysis.

UNIT IV

Proteomics - ID—SDS-PAGE, 2D-PAGE. Detection and quantitation of proteins in gels. Protein staining techniques. Affinity purification of proteins.

UNIT V

Basics of Mass Spectroscopy- MALDI-TOF and ESI and their applications in proteomics. Tandem MS/MS spectrometry.

REFERENCES:

- 1. **Ajoy Paul**., 2011. Text Book of Genetics- from Genes to Genomes- Books and Allied (P) Ltd, Kolkata. Third Edition..
- 2. **Keith Wilson and john Walker**, 2010. Principles and techniques of practical biochemistry-, Cambridge University Press, 7th edition. 39
- 3. **U.Sathayanarayana**, Biotechnology, Books and allied (p) ltd., India, 2008.
- 4. Hubert Rehn, 2006 Protein Biochemistry and Proteomics –, Acadamic press.
- 5. Liebler, Humana W., 2002. Introduction to proteomics: Tools for new Biology CBS pub.

WEB LINKS https://nptel.ac.in/courses/102/103/102103017/

https://www.coursera.org/courses?query=genomics&page=1

(For the candidates admitted from the Academic year 2021 –2022 onwards)						
COURSE	B.Sc. Biotechnology					
SEMESTER VI	VI					
CORE THEORY -X	x					
PAPER CODE	21UBT10					
TITLE OF THE PAPER	BIOPROCESS AND ENZYME TECHNOLOGY					
HOURS/WEEK	5					
NO. OF CREDITS	4					

LEARNING OBJECTIVES

The main objectives of this course are to:

- 1. Understood the applications of Microbes
- 2. Know about Fermentation, Microbial products, amino acids solvents, vitamins and antibiotics.
- 3. Understood the applications of azospirillum, bio pesticides

COURSE OUTCOMES

On successful completion of the course, student will be able to:

Course	Course Outcome Details	Knowle
No		dge
		level
1		1

CO1	Narrate the scope and economics of Microbial Biotechnology	K2
CO2	Understand the need of microbial products for the mankind	K2
CO3	Think about the innovativeness in the production of new beneficial metabolites	K2
CO4	Examine the learned techniques in production of industrially important products	К3
CO5	Understand the skills for preservation of micro organisms	К3

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

Narrate the scope and economics of Microbial Biotechnology
Understand the need of microbial products for the mankind
Examine the learned techniques in production of industrially important products
Think about the innovativeness in the production of new beneficial metabolites

UNIT I

Historical developments in Fermentation. Screening of industrially important microbes. Strain improvement. Inoculum development. Media formulation, Sterilization, Types of fermentation. Enzymes & cell immobilization techniques. Preservation of microbes.

UNIT II

Stoichiometry of cell growth and kinetics. Batch and continuous culture. Immobilization of Cells & Enzymes. Bioreactor- Design, parts and their function. Types of bioreactors- CSTR, Air lift, Bubble column, Packed bed, Tower. Overview of Down stream processing — Extra & Intra cellular products.

UNIT III

Monitoring and control of process variables (Temperature, pH and DO, mass transfer, heat transfer & O₂transfer mechanism). Computational control of fermentors.

UNIT IV

Biofertilizers — Azola, Azospirillum, Rhizobium, VAM. Biopesticides, Production of microbial products: Enzymes- Amylase, Organic acid- Citric acid, Amino acid- Glutamic acid, Antibiotics-Penicillin, Solvent- Ethanol, Vitamins- Riboflavin and SCP. Mushroom technology,

Vermitechnology, Petro corps. Quorum sensing in bioprocess. Biodyes.

UNIT V

Industrial Enzymes: Thermophilic enzymes, Lipases, Proteolytic enzymes in meat, leather & detergent industries, Enzymes in Fermentation process, cellulose & metal degrading enzymes. Enzyme Engineering- Designer enzymes.

REFERENCES:

- 1. Alexandar N. Glazer & Hiroshi Nikaido Microbial Biotechnology (Fundamental of Applied Microbiology)
- **2. El Mans, E.M.T., and Bryce, C.F.A.** 2002. Fermentation Microbiology and Biotechnology. Taylor & Francis group.
- 3. A. H. Patel, 2005. Industrial Microbiology –MacMillan Publishers.
- 4. Satyanarayana. U, 2008. Biotechnology, , Books and Allied (p) Ltd
 - **P. Ponmurugan, Nithya Ramasubramanian and Fredimoses**. 2012. Experimental Procedures in Bioprocess technology and Down stream processing. Anjana Book House, Chennai

WEB LINKS

https://www.classcentral.com/course/swayam-principles-of-downstream-techniques-in-bioprocess-3967

https://www.classcentral.com/course/swayam-industrial-biotechnology-14122

https://onlinecourses.nptel.ac.in/noc19_bt31/preview

(For the candidates admitted from the Academic year 2021 –2022 onwards)						
COURSE	B.Sc. Biotechnology					
SEMESTER VI	VI					
SBEC – IV	IV					
PAPER CODE	21UBTS04					
TITLE OF THE PAPER	PHARMACUETICAL BIOTECHNOLOGY					
HOURS/WEEK	2					
NO. OF CREDITS	2					

LEARNING OUTCOME

The main objectives of this course are to:

- To make the student to understood the concept therapy.
- This Pharmacology is the study of inherited variation in drug response.

To understand the basic steps in the drug research, toxicological, pre-clinical and clinical studies

COURSE OUTCOME

On the successful completion of the course, student will be able to:

Cours e No	Course Outcome Details	Knowledg e level				
CO1	Compare and contrast the specific pharmacology of the major classes of drugs, important distinctions among members of each class					
CO2	Understand the medicinal and pharmaceutical importance of drug compounds					
CO3	Analyze the fundamental principles of pharmacokinetics and pharmacodynamics	K2				
CO4	Acquire skills in tissue engineering like; skin,liver,pancreas					
CO5	Understand the practical skills in production of biologicals	К3				

Mapping with programme outcomes

	•				•					
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

UNIT I:

History & principle of pharmacology. Drug names & classification systems. General principle of drug action

Pharmacokinetics, Pharmacodynamics. Measurement of drug action.

UNIT II:

Chemotherapeutic drugs – Protein Synthesis Inhibitors, Anti-Inflammatory, Antibacterial, Antifungal, Antiviral, Antihelminthic, Anticancer Drugs.

UNIT III:

Production of biological – Human insulin, HGH, Erythropoietins, IFN, TNF, IL, Clotting factor VIII.

Synthetic therapy: Synthetic DNA, therapeutic ribozymes, synthetic drugs.

UNIT IV:

Prenatal diagnosis: Invasive Techniques- Amniocentesis, Fetoscopy, Chronic Villi sampling (CVS), Non Invasive Techniques – Ultra Sonography. Diagnosis using protein & enzymes

markers, DNA/RNA based diagnostics.

UNIT V:

Tissue Engineering: Skin, Liver, Pancreas. Recombinant vaccines, Cell adhesion based therapy: Integrins, Inflammation.

REFERENCE

- 1. **S.S. Purohit, Kaknani, Saleja** Pharmaceutical Biotechnology.
- 2. Mary J. Myuk, RichardA. Hoarey, Pamala Lippinwitt Williams Pharmacology edition.
- 3. **H.P. Rang, M.M. Pale, J.M. Moore ,** Churchill Livingston. Pharmacology.
- 4. **Page, Curtis, Sulter, Walker,** Halfman Integrated pharmacology. Mosby Publishing Co.
- N.Murugesh, Aconcise Text Book of Pharmacology. Sixth edition. Sathya Publishers, Madurai.
 R.C. Dubey, AText Book of Biotechnology. S.Chand& Co Ltd, New Delhi WEB LINKS

https://www.coursera.org/courses?query=pharmaceutical&page=1

https://onlinecourses.swayam2.ac.in/cec20_lb05/preview

(For the candidates admitted from the Academic year 2021 –2022 onwards)				
COURSE	B.Sc. Biotechnology			
SEMESTER VI	VI			
CORE PRACTICAL – VII	VII			
PAPER CODE	21UBTP07			

TITLE OF THE PAPER	LAB IN ANIMAL BIOTECHNOLOGY
HOURS/WEEK	3
NO. OF CREDITS	4

LEARNING OBJECTIVES

At the end of this course the student is expected to

Study the culture techniques of the animal cell culture

To ensure the students to understand about the production of transgenic products and their therapeutic applications

COURSE OUTCOMES

on the successful completion of the course, students will be able to

Course No	Course Outcome Details	Knowledg e level	
CO1	Understand the practical skills in animal biotechnology	К3	
CO2	Acquires skills in animal tissue culture	К3	
CO3	Examining and analyzing the results involved in animal tissue culture technique	K4	
CO4	Isolate and analyse genomic DNA of animal samples	K1	
CO5	Developing skills in preparation of animal cell culture media	K1	

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

1. Preparation of animal cell culture media.

- 2. Preparation & sterilization of balanced salt solution and DBSS.
- 3. Disaggregation of tissues trypsinization.
- 4. Culture of chick embryo fibroblast (monolayer).
- 5. Single cell suspension culture.
- Viability test and cell counting.
- 7. Inoculation of virus and observation- Demo.
- 8. Applications of Co2 incubator & inverted microscope.
- 9. Isolation of genetic DNA from animal tissue.
- 10. Application of membrane filter Demo

WEB LINKS

https://www.mooc-list.com/course/cell-culture-basics-canvasnet

https://nptel.ac.in/courses/102/104/102104059/

(For the candidates admitted from the Academic year 2021 –2022 onwards)					
COURSE	B.Sc. Biotechnology				
SEMESTER VI	VI				
CORE PRACTICAL – VIII	VIII				
PAPER CODE	21UBTP08				
TITLE OF THE PAPER	LAB IN BIOPROCESS TECHNOLOGY AND ENZYMOLOGY				
HOURS/WEEK	3				
NO. OF CREDITS	4				

LEARNING OBJECTIVES

The main objectives of the course is to facilitate:

The Students to gain sound technical knowledge and hands on practical skills in variousaspects

of bioprocess Biotechnology and enzymology

COURSE OUTCOMES

On the successful completion of the course, student will be able to:

Course No	Course Outcome Details	Knowledge level
CO1	Acquire an overview about the fundamentals of Bioprocess Technology and enzymology tools	К3
CO2	Understand the bioprocess skills in industry, agriculture and milk production	К3
CO3	Isolate and analyse enzymes	K4
CO4	Develop skills in mushroom cultivation	K1
CO5	Prepare vermicompost for agriculture industry	K1

Mapping with programme outcomes

	•			, ,	•					
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

- 1. Isolation of industrially important enzymes in microorganism (amylase and protease).
- 2. Isolation of Antibiotic Producing Microorganism.
- 3. Production & Estimation of Biomass (SCP), Dry weight & Wet weight methods.
- 4. Production of wine and estimation of Alcohol.
- 5. Immobilization of yeast cells & Enzymes.
- 6. Production & Estimation of citric acid.
- 7. Isolation of *Rhizobia* from Root Nodules.
- 8. Determination of TDT & TDP.
- 9. Assay of Amylase and Protease enzyme.
- 10. Qualitative analysis of milk

11. Mushroom Cultivation (Demo).

12.Vermicompost Production

(Demo).

WEB LINKS

https://onlinecourses.nptel.ac.in/noc19_bt31/preview_https://www.classcentral.com/course/swayam-industrial-biotechnology-14122

https://www.classcentral.com/course/swayam-principles-of-downstream-techniques-in-

bioprocess-3967

ELECTIVE SUBJECTS

(For the candidates admitted from the Academic year 2021 –2022 onwards)					
COURSE	B.Sc. Biotechnology				
SEMESTER V	V				
ELECTIVE SUBJECT	PART III				
PAPER CODE	21UBTE01				
TITLE OF THE PAPER	MEDICAL BIOTECHNOLOGY				
HOURS/WEEK	5				
NO. OF CREDITS	4				

LEARNING OUTCOME

- Understanding of advantages and hazards of microbial world. Advanced knowledge for growth and control micro organisms for wealth production.
- To give students a solid foundation in biology and chemistry.
- To develop analytical and critical thinking skills in biological phenomena through scientificmethods

COURSE OUTCOMES

On the successful completion of the course, student will be able to:

:

Course No	Course Outcome Details					
CO1	Understand the role of biotechnology in healthcare	К3				
CO2	describe the pharming for human proteins and neutraceuticals analyze the diagnosis and prediction of disorders.	К3				
CO3	Evaluate the recent developments in medical biotechnology	K4				
CO4	Understand the role of biotechnology in healthcare	K1				
CO5	Developing skills for diagnosis techniques and pharming for human proteins	K1				

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

UNIT I

Tools of Medical Biotechnology – Biotechnological revolutions- Genomics, combinatorial chemistry, insight into basic biology-Areas of application, Diagnosis and prediction of disorders, Limits and approaches

UNIT II

Principle: ELISA, western blotting immunoflorescence, flow cytometry

Assays: Proliferation assay (lymphocyte, MTT), Cell cytotoxicity, apoptosis UNIT

Ш

Role of biotechnology in healthcare. Worldwide market and work in medical biotechnology. Vaccine Production-New developments. Biosensors in clinical diagnosis, chiral technology, monoclonal antibodies for immunotherapy.

UNIT IV

Prenatal diagnosis - Invasive techniques and Non-invasive techniques — Diagnosis of pathogenic microbes: Classical and modern methods- Diagnosis using protein and enzyme markers, DNA/RNA based diagnosis - Molecular markers - Microarray technology - genomic and cDNA arrays.

UNT V

Recent developments in medical biotechnology —Pharming for human proteins and nutraceuticals. Tissue engineering and therapeutic cloning, Application of nanotechnology in biomedical sciences- Green anaosubstances, gene delivery, drug delivery. Nanotechnology in replacing defective cells.

REFERENCE BOOKS

Fundamentals of medical biotechnology by Aparna Rajagopalan, Ukaaz publications.

Medical biotechnology by S.N.Jogdand, Himalaya publications

Medical Microbiology- Mackie and Mc Cartney

Jogdand, S. N. Medical Biotechnology, Himalaya Publishing house, Mumbai, 2005.

Click, B. R. and Pasternak. Molecular Biotechnology: Principle and applications of recombinant DNA. ASM Press, 2010

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

https://www.toppr.com/guides/biology/biotechnology-principles-and-process/tools-of-

<u>biotechnology/</u> <u>https://www.slideshare.net/aiswaryababunaishu/applications-of-medical-biotechnology</u>

https://byjus.com/biology/application-biotechnology-medicine/

(For the candidates admitted from the Academic year 2021 –2022 onwards)				
COURSE	B.Sc. Biotechnology			
SEMESTER V	V			
ELECTIVE SUBJECT	PART III			
PAPER CODE	21UBTE02			
TITLE OF THE PAPER	ENZYME AND ENZYMETECHNOLOGY			

HOURS/WEEK	5
NO. OF CREDITS	4

COURSE SCOPE & OBJECTIVES:

- This course provides the theory and knowledge relevant to the enzymology principles including fundamental properties of enzymes, enzyme catalytic mechanisms and enzyme kinetics.
- Students will also be introduced to the theory as well as applications of enzyme technology in food, medical, and household industries.
- This course serves to provide an awareness of the current and possible future applications of enzyme technologies. Course Outcomes:

On the successful completion of the course, student will be able to:

Course No	Course Outcome Details	Knowledg e level		
CO1	Distinguish the fundamentals of enzyme properties, nomenclatures, characteristics and mechanisms	К3		
CO2	Discuss various applications of enzymes that can benefit human life	К3		
СОЗ	Discover the current and future trends of applying enzyme technology for the commercialization purpose of biotechnological products.	K4		
CO4	The student will demonstrate an understating of enzyme catalysis and incubation	K1		
CO5	Develop skills in industrial and clinical uses of enzymes			

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

Unit I- Introduction to Enzymes

General introduction and historic background- General Terminology, Nomenclature and Classification of Enzymes. Enzyme units-Katal and IU. Enzyme activity. Protein nature of enzymes and Non protein enzymes-Ribozymes and DNAzymes. Coenzymes and Cofactors- Prosthetic group,

coenzymes involved in different metabolic pathways. Classification of coenzymes. Isozymes, Abzymes, Synzyme

Unit II- Enzyme Catalysis and Inhibition

Lock and key, Induced fit and Transition state Hypotheses. Mechanism of enzyme catalysis- Serine proteases-Chymotryspin, Lysozyme, Carboxypeptidase A and Ribonuclease., Proenzymes (Zymogens). Reversible Inhibition- Competitive, Non Competitive, Uncompetitive. Irreversible Inhibition-Suicide inhibition. Examples and Mechanism of various Inhibitions like Penicillin, & Iodoacetamide.

Unit III - Enzyme Kinetics

Factors affecting the enzyme activity- Concentration, pH and temperature. Michealis-Menten Equation, Km, Vmax, L.B Plot, Turnover number, Kcat. Kinetics of Enzyme Inhibition. Kinetics Allosteric enzymes.

Unit IV- Enzyme Organisation

Organisation of enzymes in the cell. Enzymes in the cell, localization, compartmentation of metabolic pathways, enzymes in membranes, concentrations. Mechanisms of enzyme degradation, lysosomal and nonlysosomal pathways, examples.

Unit V Industrial and Clinical uses of Enzymes (Applied Enzymology)

Industrial Enzymes- Thermophilic enzymes, amylases, lipases, proteolytic enzymes in meat and leather industry, cellulose degrading enzymes, Metal degrading enzymes.

Clinical enzymes- Enzymes as thrombolytic agents, Anti-inflamatory agents, streptokinasae, asparaginase, Isoenzymes like CK and LDH. Immobilization of enzymes, Biosensors. Enzyme Engineering and site directed mutagenesis, Designer enzymes.

TEXT BOOKS:

- 1. Fundamentals of Enzymology: Nicholas Price & Lewis Stevens
- 2. Enzymes: Biochemistry, Biotechnology and Clinical Chemistry- Trevor Palmer 3. Biochemistry text books by Stryer, Voet and Lehninger (Relevant Chapters) 4. Proteins by Gary Walsh

WEB LINKS

https://onlinecourses.swayam2.ac.in/cec20 bt20/preview https://nptel.ac.in/courses/102/102/102102033/ https://www.mooc-list.com/tags/enzymes

(For the candidates admitted from the Academic year 2021 –2022 onwards)					
COURSE	B.Sc. Biotechnology				
SEMESTER VI	VI				
ELECTIVE SUBJECT	PART III				
PAPER CODE	21UBTE03				
TITLE OF THE PAPER	FOOD BIOTECHNOLOGY				
HOURS/WEEK	5				
NO. OF CREDITS	4				

LEARNING OBJECTIVES

The main objectives of the course is to

Make the students to understood the concept of food colors, food flavoring agents, food sweetners.

Acquire a basic understanding about the food engineering operations

COURSE OUTCOME

On successful completion of the course, student will be able to:

Course No	Course Outcome Details	Knowledg e level
CO1	Narrate the scope and economics of Food Biotechnology	К3
CO2	Examine the learned techniques in production of Genetically modified food.	К3
CO3	Think about the innovativeness in the production of new beneficial food flavoring agents.	K4
CO4	Understand the need of edible vaccine products for the mankind	K1
CO5	Develop skills for clinic and sanitation of process plants	K1

Mapping with programme outcomes

	•			, ,	,					
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

Microorganisms associated with food - bacteria, fungi & yeast. Enzymes in food preparation. Food contaminations. Food preservation. Food carcinogens & mutagen (N – nitrosamines, Acrylamide & their mode of action)

UNIT II

Food borne diseases. Food Allergens. Antioxidants. Food colors (natural & artificial food colourants). Food flavoring agents. Properties & function of Emuls ifiers & Stabilizers in food. Food Sweeteners — Saccharine, Acesulfane, Aspartame & Sucrolose).

UNIT III:

General principle, plant design, construction, functionality of building, Plant layout. Pest proofing / fumigation methods. Water supply to food processing unit.

UNIT IV:

Food engineering operations: Characteristics of food raw materials, preparative operations in food industry, cleaning of food raw materials, sorting of foods, grading of foods. Sensory evaluation of food quality, quality factors for consumer

safety. FSSA, HACCP FDA.

UNIT V:

Cleaning and sanitation of process plants. Classification & Characterization of waste from food industry. Treatment methods for solid & liquid waste.

Genetically Modified Food – Bovine somatotropin, alpha lactalbumin & lactoferrin in milk, Edible vaccine (Cholera vaccine –potatoes & Hepatitis B vaccine - maize).

REFERENCES:

- 1. **B.Siva** 2011.Food Processing & Preservation –PHI Learning Pvt Ltd.
- 2. **D.G. Rao,** 2010. Fundamentals of Food Engineering –PHI Learning Pvt Ltd.
- 3. Narang, Food Microbiology
- 4. **Michael P. Doyle, Larry. R.** Food Microbiology Fundamentals & Frontiers
- 5. **Frazier,** Food Microbiology
- 6. Yiu Hui & G. Khachatourians, Food Biotechnology
- 7. **ibek, Laramie & Bhunia,** Fundamentals of Food Microbiology, CRC Press. **RELATED**

ONLINE COURSE

https://www.mooc-list.com/tags/food-technology

(For the candidates admitted from the Academic year 2021 –2022 onwards				
COURSE	B.Sc. Biotechnology			

SEMESTER VI	VI
ELECTIVE SUBJECT	PART III
PAPER CODE	21UBTE03
TITLE OF THE PAPER	ENTREPREURSHIP IN BIOTECHNOLOGY
HOURS/WEEK	5
NO. OF CREDITS	4

COURSE SCOPE & OBJECTIVES:

Students will be able to compost in a limited space and describe the decomposing process. The interested students will get the knowledge of Apiculture and Aquaculture. Students will get the employment and they can generate employments,

They will also turn towards organic farming. It will help to maintain the environment pollution free and will get the knowledge of biodiversity. **Course Outcome:** On successful completion of the course, student will be able to:

Course No	Course Outcome Details	Knowledge level
CO1	Sell themselves and their ideas.	К3
CO2	Find problems worth solving.	К3
CO3	Create values for bio products	K4
CO4	Develop skills for preparation of biopesticides and biofertilizers	K1
CO5	Acquires knowledge about apiculture and aquaculture	K1

Mapping with programme outcomes

арр8 р8. а										
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	M	S	M	L	S	M	S
CO2	S	L	M	M	S	M	L	S	M	S
CO3	S	L	M	M	S	M	L	S	M	S
CO4	S	L	S	S	S	S	L	S	M	S
CO5	S	L	L	L	S	L	S	S	M	S

S-strong M-medium L-low

Unit I - Apiculture

Importance and history of apiculture. Different species of honey bees.

Morphology, anatomy, colony organization and life cycle. Beekeeping equipment. Social behaviour. Queen rearing. Handling of bee colonies and manipulation for honey production.

Unit II - Aquaculture

Introduction – Importance of Inland fisheries principles and aim of fish culture Qualities of culturable fishes. Types of fish culture – mono culture – composite culture – paddy cum fish culture. Fresh water Prawn culture – Preparation of farm – Reproduction – Seed collection and Transport.

Unit III – Vermicomposting

Vermicomposting: Introduction and Scope. Types of Earthworm and Classification Epigeic, Endogeic, Diageic. Life history of Earthworms (Earthworm Species Eisenia foetida). Pests and diseases of Earthworms. Different Methods of Vermicomposting: Small and large scale Bed method, Pit method. Physico- chemical analysis of vermicompost: Nutrient content of vermicompost and their role in agriculture.

Unit IV - Biofertilizers

Biofertilizers – Introduction, biofertilizers using nitrogen fixing microbes & phosphate solubilization. Cultivation, mass production and inoculation of Rhizobium,

Azotobacter, Azospirillum, Azolla and cyanobacteria, Carrier-based inoculants, methods of application,

Unit V – Biopesticides

Biopesticides – Bacillus thuringiensis, B. sphaericus, B. popilliae, Psuedomonas syringae. Biocontrol- Microbial control of plant pathogens-Trichoderma. Biological Control – Use of Baculovirus & NPV virus in biological control.

References:

K. Shanmugam. 1992. Fishery Biology and Aquaculture, LEO Pathippagam. Chennai. The Textbook of Vermicompost, Vermiwash and Biopesticides: Keshav singh and et al Publisher: Biotech Books.

Agricultural Microbiology by G.Rangaswamy and Bagyaraj, Prentice Hall India.

Bio-fertilizers in Agriculture and Forestry, 1995, by N.S. Subba Rao.

Honey Bee Biology and Beekeeping, Revised Edition. Wicwas Press, Kalamazoo. Pradip V Jabde, 1993.

Text Book of Applied Zoology: Vermiculture, Apiculture, Sericulture, Lac Culture, Agricultural Pests and their Controls. Discovery Publishing House, New Delhi. Eva Crane, 1999.

WEB LINKS

https://www.mitconbiopharma.com/training/bio-tech-training/certificate-course-in-biofertilizers-biopesticides-production/

https://www.wireless.education/study/basics-of-fertilizers-science-online-course-by-udemy/

https://www.coursera.org/lecture/solid-waste-management/3-10-vermicomposting-of-biowaste-FlljL

https://www.openlearning.com/courses/aquaculture-sta2473-/

MODEL QUESTION PAPERS

(For the candidates admitted from 2021–2022 onwards)

Third Semester

FOUNDATION ENGLISH - III

Technology

2.

(d) Politics

The Prince ordered to erect his public places and in Churches.

	(a)	Palace	(b)	Building
	(c)	Statue	(d)	Tower
3.	The	story 'Last Leaf' was	set in –	village.
	(a)	Greenwich		
	(b)	Hertfordshire		
	(c)	Greenworth		
	(d)	Browmwich		
4.	Robe	ert Burns was a		Poet.
	(a)	English	(b)	Scottish
	(c)	French	(d)	Canadian
5.	The	poem "La Belle Sans	Merci"	is a ————
	(a)	lyric	(b)	ballad
	(c)	epic	(d)	sonnet
6.		poem "The Unknow Iern man.	n Citizeı	n" is a/an on the life of
	(a)	satire	(b)	comedy
	(c)	ballad	(d)	epic
7.	says	that he will marry M	lrs. Johr	Shorrocks.
	(a)	Ben	(b)	Slater
	(c)	Abel	(d)	George
8.	The 182		kes plac	e on _ (a) 30 th May 1824 (b) 13 th May
	(c)	30 th May 1842	(d)	31 st May 1842
9.	The	of Po	olice do	es not want the Queen to drive out.
	(a)	Commissioner (b)		
	Insp	ector		
	(c)	Sub-Inspector		
	(d)	Chief Inspector		
10.	Choo bask		jective:	How ————— eggs are in the
	(a) n	nuch (b) many (c) ki	lo (d) n	nore
11.	Choo	ose the correct Prepo the h		She threw him out
	(a) o	of (b) off (c) on (d) a	above	

12.	"We can't play here."								
	(a) Ravi said that they could not play there,								
	(b) Ravi told that they could not play there.								
	(c) Ravi told that they could play there								
	(d) Ravi said that they can play there								
13.	Choose the appropriate question: It is only three hundred (a) How much								
	is this shirt?								
	(b) What colour is this shirt?								
	(c) Is this shirt beautiful?								
	(d) Do you like this shirt?								
14.	Choose the appropriate tag question: Pooja is a singer								
	(a) Isn't she? (b) Is she?								
	(c) Does she? (d) Doesn't she?								
15.	In a group discussion neverwhen others speak.								
	(a) listen (b) intervene								
	(c) be patient (d) take notes PART B								
	— $(2 \square 5 = 10 \text{ marks})$								
	Answer any TWO questions, out of Five								
16.	Sketch the character of Sue in the story "Last Leaf'?								
17.	What is the central idea of the poem "La Belle Dame Sans Merci"?								
18.	Why does Prince Albert feel afraid?								
19.	Write a paragraph on the proverb "All That glitters is not gold".								
20.	Explain the term "Group Discussion". PART C — (5 $\Box\Box$								
	10 = 50 marks)								
	Answer ALL questions.								
21.	(a) Describe how Kalam appeal for creating a harmonious India.								
	Or								
	(b) Narrate the story of "The wicked Prince" in your own words.								
22.	(a) Write a critical appreciation of the poem "A Red, Red Rose" by Robert								

Or

Burns.

- (b) Explain the main message of Long Fellow's "The Psalms of Life:'
- 23. (a) Bring out the irony of the title and sketch the moral values of "The Dear Departed".

Or

- (b) Write a critical appreciation of the play "Under Fire".
- 24. (a) Rewrite the following sentences placing adjectives

in their right positions:

- (i) The weather is today fine.
- (ii) I met a Canadian tall writer
- (iii) Wonderful lotus is a flower
 - (iv) Gold is a metal costly
- (v) My Uncle is a teacher brilliant. Or
- (b) Draft a notice displayed at the entrance of a park, giving details about the visiting hours, cost of admission tickets to adults and children etc.
- 25. (a) Frame the appropriate questions for the following sentences:
 - (i) They study in Government Arts College.
 - (ii) My name is Raju.
 - (iii) She writes quickly
 - (iv) He visited Chennai, yesterday
 - (v) Raja is my best friend. Or
 - (b) Discuss the topic, "Environmental Pollutions".

(For the candidates admitted from 2021–2022 onwards)

GENERAL MICROBIOLOGY

Time: Three hours Maximum: 75 marks PART

A — $(15 \square 1 = 15 \text{ marks})$

Answer ALL the questions.

- 1. According to Pasteur statements which one of the following is true
 - (a) Living organisms discriminate between steroisomers
 - (b) Fermentation is a aerobic process
 - (c) Living organisms doesn't discriminate between stereoisomers
 - (d) Both a and b
- 2. "I found floating thern earthly particles, some green streaks, spirally wound serpent-wise, and orderly arranged, the whole circumstance of each of these streaks was about the thickness of a hair on one's head"..... These words are of

(a) Pasteur (b) A. Jenner Leeuwenhoek (d) Koch (b) Bacterial transformations were discovered by (a) **Ederberg and Tatum** (b) **Beadle and Tatum** (c) Griffith (d) Jenner Resolving power of a microscope is a function of Wavelength of light used (a) (b) Numerical aperture of lens system Refractive index (c) Wavelength of light used and numerical aperture of lens (d) system In fluorescence microscopy, which of the following performs the function of removing all light except the blue light? (a) Exciter filter (b) Barrier filter (c) Dichroic minor (d) Mercury arc lamp In Phase contrast microscopy, the rate at which light enters through objects is (a) Constant (b) Inversely proportional to their refractive indices (c) Directly proportional to their refractive indices (d) Exponentially related to their refractive indices Teichoic acid present in Gram-positive bacteria can bind to which ion? (a) Fe ions (b) Phosphorus ions (d) Sulphur ions Mg ions Bacteria having clusters of flagella at both poles of cells are known as? (a) Lophotrichous Peritrichous (b) Amphitrichous (d) Monotrichous Poly-beta-hydoxybutyrate(PHB) present in aerobic bacteria can serve as?

3.

4.

5.

6.

7.

8.

9.

(a)

(b)

(c)

10. Which of the following is the nutritional characterization of Escherichia coli?

a reserve carbon and energy source

a reserve source of phosphate

acceptor of oxygen

provides buoyancy

	(a)	Chemotrophic				
	(b)	Organotrophic				
	(c)	Autotrophic				
	(d)	Chemotrophic, Organotrophic, Heterotrophie				
11.		h of the following instrument is used for sterilizing the media it has been prepared?				
	(a)	Autoclave				
	(b)	Laminar Air Flow Chamber (c) Inoculum				
	Need	le Incubator				
12.	Which of the following method can be used to determine the number of bacteria quantitatively?					
	(a)	Streak-plate				
	(b)	Spread-plate				
	(c)	Pour plate				
	(d)	Pour-plate and spread plate				
13.	beca	h of the following chemothearpeutic agent is extensively used use of their antibacterial effcetiveness in a wide range of crial infections? (a) arsphenamine				
	(b)	sulfanilamide				
	(c)	sulfonamide				
	(d)	sulfadiazine				
14.		h of the following antibiotic s not involved in the inhibition of fic enzyme systems?				
	(a)	Penicillin				
	(b)	Tetracycline				

- Sulphonamides (c)
- (d) Chloramphenicol
- 15. Interference mechanism of ciprofloxacin and norfloxacin is due to their action on (a)

Cell wall synthesis

- (b) Cell membrane synthesis
- (c) **DNA Function**
- (d) **Protein Synthesis**

PART B —
$$(2 \Box 5 = 10 \text{ marks})$$

Answer any Two questions.

- 16. Describe the experiment of Louis Pasteur for fermentation?
- 17. Explain differential staining.
- 18. Flagella is locomotory organ for bacteria. Explain
- What are the methods of preservation of culture? 19.

- 20. Bring out the general characteristics of Antimicrobial drug? PART
 - C $(5 \square 10 = 50 \text{ marks})$ Answer ALL questions.
- 21. (a) Give a detailed account on contribution of Leewenhock and Louis Pasteur for microbiology

Or

- (b) Explain in detail about biogenesis of microbiology
 - 22. (a) Compare and Contrast the characteristics of bright field and Dark field microscopy Or
- (b) Illustrate with neat diagram, explain the working principles and application of fluorescent microscopy.
 - 23. (a) Describe with labelled diagram in words the fluid mosaic model for cell membrane.

Or

- (b) Explain in detail about the structure and flagella movement in prokaryotic cell.
 - 24. (a) Discuss the way in which micro-organism are classified based on their requirement for energy and electron.

Or

- (b) Explain how environmental factors affecting bacterial growth.
 - 25. (a) Give a detail account on mechanism of action of antimicrobial drug as cell wall synthesis inhibitor with two examples

Or

(b) Comment on Antibiotic sensitive test (For the candidates admitted from 2021–2022 onwards)

Third Semester

Biotechnology

SBEC - DEVELOPMENT BIOLOGY

Time: Three hours Maximum: 75 marks PART A

— $(15 \square 1 = 15 \text{ marks})$

Answer ALL questions.

- 1. What happens during spermatogenesis
 - (a) Mitosis
 - (b) Meiosis
 - (c) Mitosis and Meiosis
 - (d) None of the above

	۷.	iviidu	ne piece or mam	manan spei	in contains							
		(a)	Centriole									
	8.	How	many cleav completed st		are gg?	in	the 16-celled i	(b)	М			
		(a)	12	(b)	8		t o					
		(c)	4	(d)	3		С					
							h					
							o n					
							d					
							r					
							i					
							a					
								(c)	N			
							u	(-)				
							С					
							l e					
							u					
			s and mitochor	ndria								
		(d) Centriole and mitochondria										
	3.	Cessa	ation of menstru	al cycle is c	alled as							
		(a)	Ovulation (b)	Meno	oause							
(c)	Par	turitio	on (d) Me	enarche								
	4.	Which of the term best suits for milk production										
		(a)	Lactation (b) Pa	arturition (d	e) Mensurat	tion (d)	Ovulation					
	5.	Fertilization of sperm and ovum takes place in										
		(a)	Ampulla of ovi	duct								
		(b)	Isthmus of ovic	duct								
		(c)	Fimbriae of ovi	ductd								
		(d)	Uterus									
	6.	In the	In the absence of acrosome the sperm cannot									
		(a)	Penetrate into	egg (b)	Get energy	У						
		(c)	Get food	(d)	Swim							
	7.	The t	ypes of cleavage	e found in ir	sects is							
		(2)	Holoblasti -	(h)	Diego: 4: -1							
		(a) (c)	Holoblastic Superficial	(b) (d)	Discoidial Meroblast							
		(L)	ouperneiai	ία)	ואוטטוטוייו	.10						

9.	The f	fertilized egg divides b	y the	process of	
	(a)	Oogenesis	(b)	Cleavage	0
	(c)	Regeneration	(d)	Invagination	n e
10.	Male	gametophyte of angi ————————————————————————————————————	-		o f
	(a)	Four			t
	(b)	Three			h
	(c)	Microspore mother	cell		e
	(d)	Anther			s e
11.	Fema	ale gametophyte of ar	ngiosp	erm is represented by	P
	(a)	Ovule			A
	(b)	Megaspore mother	cell		R T
	(c)	Embryo sac			1
	(d)	Nucleus			В
12.	Embr	ryo sac occurs in			
	(a)	Embryo	(b)	Axis part of embryo	(
	(c)	Ovule	(d)	Endosperm	2
13.	Later	al roots originated in			
	(a)	Cortex	(b)	Endodermal cells	5
	(c)	Pericycle	(d)	Cork Cambium	=
14.	The apical meristem of roots is found in				
	(a)	Taproots	(b)	Radicals	0
		•			m a
	(c)	Adventious roots	(d)	All the roots	r
15.	Inter	calary Meristem resul	ts in		k
		,			s)
	(a)	Primary growth			Á
	(b)	Secondary growth			n s
	(c)	Apical growth			W
16.	Give	an account on sperm	hankii	ng with its importance.	e r
		•			-
17.	Enlist	t the main characteris	tic fea	tures of egg and sperm.	a
					n y

(d)

Ν

18.	Discuss briefly about cleavage and its patterns.	T
19.	List out the advantage and disadvantage of cross pollination.	W O
20.	Write a note on Phyllotaxy and its types.	q u
	PART C — (5 \square 10 = 50 marks) Answer	e s
21.	ALL questions. (a) Discuss in detail about spermatogenesis in mammals.	t i o
	Or	n s
	(b) Write an elaborate essay on Oogenesis in mammals.	0
	22. (a) Narrate an essay on post fertilization events	s. u t
	Or (b) Discuss in detail about the activation of sperm and egg in	o f
	mammals.	F
23.	(a) Write an account on distribution of cytoplasmic substances in the egg.	i V
	Or	e
	(b) Write an essay on the hormonal control of metamorphosis.	Or
24.	(a) Distinguish mega sporangium and microsporangium	n. (b) W
	Or	i t
(b)	Outline the concepts of experimental biology 25. (a) Explain the shoot apical meristem.	e
	n elaborate account on leaf development.	a
	(For the candidates admitted from 2021–2022 onwards)	
	Second Semester	
	Allied II – BIOCHEMISTRY – II (Common for Biotechnology / Microbiology)	
	Time: Three hours Maximum: 75 marks	

Which one of the following will turn red litmus blue?

1.

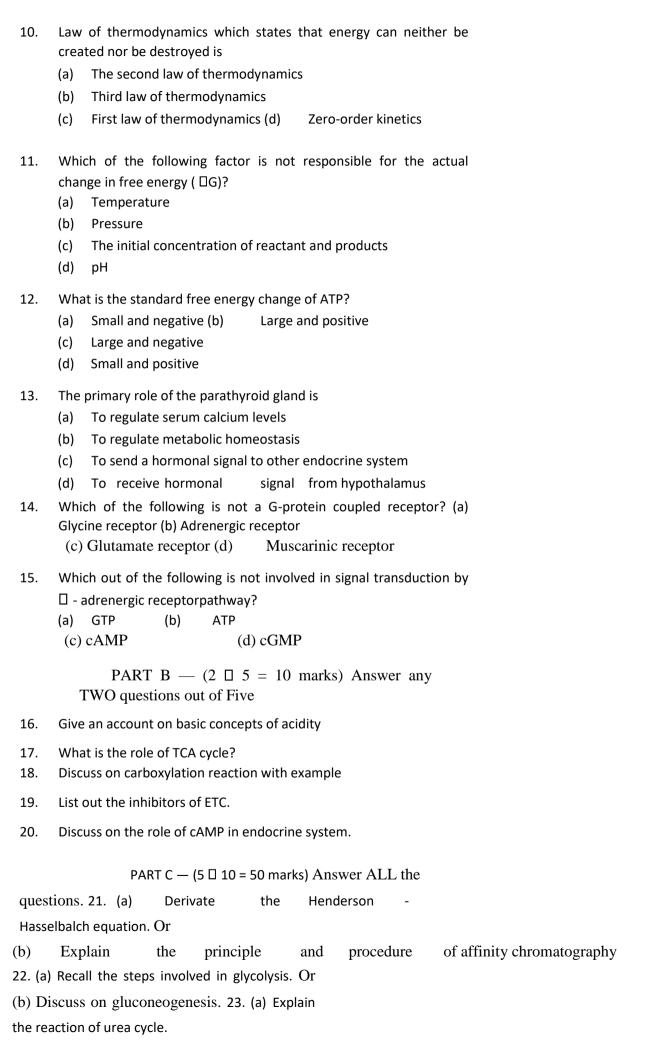
(a) Vinegar

	Hass	elbalch equation
	(a)	pH = pKa + log {[conjugate base]/[Acid]}
	(b)	pOH = pKb + log {[conjugate acid]/[Base}}
	(c)	pH = pKa - log {[conjugate acid]/[Base}}
	(d)	pOH = pKb - log {[conjugate base]/[Base]}
4.		many total molecules of ATP are synthesized from ADP via plysis of a single molecule of glucose?
	(a)	4 (b) 38
	(c)	36 (d) 5
5.	'coe	many molecules of acetyl CoA, an acetyl group attached to nzyme A', are produced from a single molecule of glucose for icipation in the Krebs cycle? 1 (b) 2 (c) 3 (d) 4
_	. ,	
6.		e the pathway for glucose synthesis by non-carbohydrate ursors?
	(a)	Glycogenesis (b) Glycolysis
	(c)	Gluconeogenesis (d) Glycogenolysis
7.	Whie corre	ch of the following statements about transamination reactions is ect?
	(a)	Transamination reactions involve ATP hydrolysis
	(b)	Transamination reactions are irreversible
	(c) (d)	Transamination reactions require NAD ⁺ or NADP ⁺ Transamination reactions require pyridoxal- 5' - phophate
8.	Whi	ch of the following statements about the urea cycle is correct?
	(a)	Argininosuccinate is lysed to urea and ornithine in the urea cycle
	(b)	Carbamoyl phosphate supplies both of the nitrogen atoms of urea in the urea cycle.
	(c)	The formation of urea from the urea cycle yields energy.
	(d)	Arginine is hydrolysed to urea and ornithine in the urea cycle
9.		ch of the following would yield the most energy per gram when ized?
	(a)	Starch (b) Glycogen
	(c)	Protein (d) Fat

(b) Baking soda solution

(a) A weak acid in solution(b) A strong acid in solution(c) A weak base in solution

A buffer solution comprises which of the following?


(d) A weak acid and its conjugate base in solution

Point out the odd man out in accordance with the Henderson-

(c) Lemon juice(d) Soft drinks

2.

3.

- (b) Distinguish between beta and omega oxidation.
 - 24. (a) Give an over view of electron transport chain with sequence of reaction.

Or

(b) Illustrate on uncouplers of oxidative phosphorylation. 25. (a)

Classify the hormones

Or

(b) Highlight the synergistic and antagonistic effect of hormone interactions.

(For the candidates admitted from 2021–2022 onwards)

B.A./B.Sc./B.Com./B.B.A. DEGREE EXAMINATION,

First Semester FOUNDATION

ENGLISH - I

Time: Three hours Maximum: 75 marks SECTION

A — (15 marks) I.

Answer the following multiple choice questions:

 $(15 \times 1 = 15)$

- 1. How do the guests greet each other at a wedding at 11.00 am? (a) Good morning (b) Good afternoon
- (c) Good evening (d) Good night
- 2. Sameer is meeting his friend Ram's friend, Joseph, at the post-office. How will he introduce himself?
 - (a) Hi! I'm Ram's friend
 - (b) Hello! I'm Sameer
 - (c) Excuse me. May I introduce myself. I am Ram's friend Sameer (d) Hello, how do you do?
- 3. You are late for a function. Your friend Radha has been waiting for the past one hour. What will you say when you meet her? (a) Sorry, Radha for making you wait so long (b) Are you waiting?
 - (c) Sorry, Radha
 - (d) My friend Radha is waiting
- 4. What is your favourite subject?
 - (a) I learn English
 - (b) I am studying English
 - (c) English is my favourite subject
 - (d) I should learn English
- 5. What is the capital of Kerala?
 - (a) Cochin
- (b) Palakkad
- (c) Alapuzha
- (d) Trivandrum
- 6. Choose the correct meaning of the following underlined expression. Multiplication of human beings resulted in <u>conflict</u> among themselves.

	(a) loving	(b) fighting				
	(c) sharing	(d) caring				
7.	The village people —-	———— goats and birds to Goddess Kali.				
	(a) Cooked	(b) Caged				
	(c) Sacrificed	(d) Welcomed				
8.	Fill in the blanks to for	m correct word : flh				
	(a) a, s	(b) e, i				
0	(c) a, i	(d) a, e				
9.	The Giant had a ——— (a) lovely (b) ugly (c) 1	-				
10.	Give the meaning of the					
		I love you and will never leave you'.				
	(a) unworthy					
		(b) valuable				
	(c) cheap					
	(d) popular					
11.	Rearrange the letter to form a proper word:					
	(a) Sagrifice (b) Sac	(a) Sagrifice (b) Sacrifice (c) Sakrifise (d)				
	Sacrifize					
12.	Tom was sent to bring	the ————.				
	(a) ladder	(b) hammer				
	(c) drill	(d) picture				
13.	Sweets with excess gh	ee and sugar can be				
	(a) satisfying					
	(b) nauseating					
	(c) satiating					
	(d) fulfilling					
14.	Squirming means ——	·,				
	(a) rolling					
	(b) keeping straight					
	(c) twisting					
	(d) curving					
4-5	The picture was hanged in the —————.					
15.	The picture was hange	ed in the ————.				
15.	The picture was hange (a) morning	ed in the ————.				
15.		ed in the —————.				

(d) midnight

II)Answer any TWO of the	following questions
--------------------------	---------------------

 $(2 \square 5 = 10 \text{ marks})$

16.	C:II :	n the blanks with s	uitable response
LO.			Can you please tell me the oom in which Mr. Rajan is?
		ceptionist : - kash :	
	Red	-	The visiting hours are 5 to 7 pm. Now it is 8 O'clock
	Pral	kash :	I'm sorry.
	Re	ceptionist :	That's against the rules.
	Pral	kash : -	
17.	Say	whether the follow	ring statements are true or false.
	(a)	Some tiny anima	s called human beings a menace. (true/false)
	(b) (c)		ral resources multiplied. (true/false) rees are its limbs that spread out. (true/false)
	(d)	Parkesine was ir (true/false)	vented by British chemist Alexander Parkes
	(e)	The word (true/false)	f 'plastic' comes from Italy.
	(f)	The Gian	t's garden had peach trees. (true/false)
	(g)	Everyone is not a	precious child of God. (true/false)
	(h)	There are nine Ca	ardinal notes. (true/false)
	(i)	Aunt Maria said around. (true/fal	she would not allow the children to stand
	(j)	The tail of the ele	phant was like a snake. (true/false)
18.	Ann	otate the following	Ţ.
	(a)	·	nly set of footprints, It was then that I
	(b)	carried you.	sacrifice the world. To satiate its lust
	(n)	vviii iluillali ego	sacrifice the world. To satiate its idst

for pompous homes?

Fill in the blanks with suitable preposition:

(a) Plastics have made life easier ———— us.

19.

- (c) India has given ————— the world the story telling tradition.
- (d) Kalidasa's 'Shakuntala' has been translated many languages.
 - (e) 'Sindhu' ---- Sanskrit means river.
 - (f) Indica was written —————
 Megasthenes.
 - (g) The Aryans who came ————— Bharat called the river Sindu.
 - (h) How long have you been ————— the army?
 - (i) Don't sit ————— that chair, it is broken.
 - (j) A passenger train usually stops ————— every small station.
- 20. Match the words in Column A with their meaning in Column B.
 - S. No. Column A Column B 1 bawl excited 2 seize weapon 3 deny shout 4 refuse spear 5 eager pull drill 6 enough 7 sufficient machine for making holes 8 wake up immense 9 excel great or very big 10 awake perform very well

21. (a) Read the following passage and answer the questions that follow : $(5 \square 10 = 50)$

India's epics – the Ramayan and the Mahabharata – are ranked among the best in the world. Kalidasa's _Shakuntala' has been translated in many European languages. India has given to the world the story telling tradition and it was only from old Sanskrit tales that the Aesop's fables, the Arabian Nights and even the story of Cinderella and the Jack and the Bean Stalks were derived.

- (i) What are the two great epics of India?
- (ii) Who wrote Shakuntala?

- (iii) What are the stories that were derived from the old Sanskrit tales?
- (iv) What are the fairy tales mentioned in the passage?
- (v) What was the book translated in many European languages?

Or

- (b) Answer about your daily activities:
 - (i) What is your favourite subject?
 - (ii) When do you get up every day?
 - (iii) What do you have for breakfast?
 - (iv) When do you break for lunch?
 - (v) How many friends do you have?
- (vi) When does your college-work start?
- (vii) How often do you go to movies? (viii)What's your favourite programme?
- (ix) Do you have a 'smart' phone?

When do you go to bed?

- 1. (a) How was the selfish Giant transformed to a kind Giant? Or
 - (b) How did plastics make life much easier?
- 2. (a) Give reasons to say that the poem "Footprints in the Sand" in inspirational and heart- warming. Or
 - (b) Attempt an essay on the greatness of India.
- 3. (a) How and why is the earth becoming an 'orb that's bald'? Or
- (b) What do you learn from the story —Uncle Podger Hangs a Picture!!?
 - 4. (a) Write a letter to the District collector about your ideas of planting and protecting trees in rural areas. Or
 - (b) Write a letter to your friend suggesting Swami Vivekananda's speeches for his reading.

(For the candidates admitted from 2021–2022 onwards)

B.Sc. DEGREE EXAMINATION,

First Semester

Biotechnology

Core I – CELL BIOLOGY $(15 \times 1 = 15 \text{ marks})$

Time : Three hours Maximum : 75 marks PART A Answer ALL questions.

	(a)	Duplication	(b) Growth phase	
1.	The	quantosomes was disc	overed by	(c) C
	(a)	Francis Crick	(b) Part and Pon	e
(c)		Watson and Crick	(d) Jacques Monod	1
				1
2.		ryotic cells containing		c
(a)	(a)	True nucleus Nucleoid	(b) Definite nucleus	у
(c)		Nucleolu	(d) Mesosome	c
3.	Cell	divide and produce		1
	(a)	Gogi body	(b) Mesosome	e
(c)		Daughter cells	(d) Single chromosome	
	Divi			(
4.		nodesmata is found in		d
(a)	(a)	Cell wall	(b) Cytoplasm)
(c)	Outo	Nucleus	(d) Cell membrance ective layer of animal cell is ——————————————————————————————————	,
5.		innost tilli livilig prote	ective layer or arminal cell is ——————	Ī
	(a)	Plasma membrane (b) Cell wall	n
(c)	(α)	Cell barrier	(d) Cell layer	t
6.	Inter		nt cells through their plasma membrane	e
		alled	g ,	r
(0)	Call	iunctonsons (b)	Microvilli	p
(a)		(1)	\	h
.(c) 8.		t desmosomes (d discovered ribosome?		a
0.	(a)		(b) Part and Pon	S
(c)	(a)	Jacqes Monod Palade	(d) Francis crick	e
(C)		1 alauc	(u) Prancis Crick	1
9.	The c		two identical' spinally coiled filaments are	1
(a)	(a)	Chromatid	(b) Centrosome	•
				L
(c)			l) Chromonemata	y
(c)		(d)	,	S
10.			successive cell divisions is called —————	О
somes	are o	of called as		
a) chro	omos	ome	b) centrosome	
c) mite	ochor	ndria	d) suicidal bag	

12 The stage of mitosis during which the nucleolus disintegrates

and chromosomes appear is known as —————

	(a)	Prophase (b) Metap	hase				
(c)	Inte	r phase	(d) Anaphase				
		13 Two homologous chi	romosomes pairing is called				
	a) St	item cell	(b) Synapsis				
(c)	Syn	gamy	(d) Spindle				
	(b)	The programmed cell de	ath is called				
		a. Apomixis	(b) Apoptosis				
(c)	Auto	ophagy	(d) Autolysis				
	(c)	Cilia and flagella cellular	appendages not found in				
	(0)	a. Bacteria	(b) Virus				
(a)	LI; al						
(c)	nıgı	her plants	(d) Higher animals				
	(d)	Which of he following is	not a part of neuron?				
		a. Nucleus	(b) Dendrite				
(c)		Synaptic cleft	(d) Lobe				
		DADT D (2)	T 5 10 1 \ A				
		TWO questions out of I	\Box 5 = 10 marks) Answer any Five.				
	(e)	Write a note on prokaryo					
		(f) Describe about the composition o bacterial cell wall.					
	(g)	Explain the structure and					
	(h)	Explain about the cell div	vision.				
	(i)	Explain the flagellar mov	ements.				
		•	0 = 50 marks) Answer ALL questions				
		either (a) or (b).					
	(j)	., .	esis theory of orgining of life. Or				
(b)		Enumerate the Eukry	otic cell organization.				
	(k)		I mosaic model of plasma memberane.				
(b)		Or Give in detail account	at of Call adhasion				
(b)		Give in detail accoun	it of Cen adhesion.				
	(I)	(a) Explain about the	functions of lysosome. Or				
			ture and functions of mitochondria.				
	(m)		yokinesis and mitosis. Or				
(b)		Describe about the G	-protein receptors.				
	n)(a)) Explain about the Ame	oboid movements.				
		Or					
	(b)) Describe the Nerve in	mpulse conduction.				
	(For	the candidates admitted	from 2021–2022 onwards) B.Sc				
		First Sem	ester				
		Biochem	istry				
		Allied I – Bioch	emistry – I (Common for				
			- · · · · · · · · · · · · · · · · · · ·				

Biotechnology/Microbiology)

Time : T	hree hours		Maximum: 7	'5 marks
	PAI	RT A — (15 a Answer ALI	\times 1 = 15 marks \perp questions.	3)
(a) (b) (c)	Glucose and fro Glucose and ga	uctose Ilactose ucose	of ————	- .
(a)		(b) Starch	-	- glycosidic bonds.
4. Wł	nich of the follo	wing is a non-r	educing sugar?	
	Glucose Sucrose	(b) (d)	Lactose Maltose	
(a)		(b) Threor	essential amino nine) Histidine	acid?
(a)		(b) Arginir	roup, an aromat ne) Cysteine	ic ring found?
7. Wh (a) (b) (c) (d)	nich bond stabil Covalent bond Hydrophobic b Hydrogen bond Vanderwall's fo	ond d	dary structure o	f a protein?
	nich of the for penzyme and co Enzyme-substr Enzyme-produ Prosthetic grou Holo enzyme	penzyme? ate complex ct cpx	oduced with	the combination of
٠,	n is a ——————————————————————————————————			

(d) Enzyme precursor

9.	Lock and key theory o	of enzyme action v	was proposed b	y ———	
	(a) Koshland (b)				
	(c) Kuhne	(d) Arrhe	enius		
21.	(a) Describe the stru	ucture and signific arides. Or	ance of	i	10
	(b) Discuss the functions	structure of mucopolysa	and accharides.	n d	
				О	
	ut the nucleotide pres	-			
	(a) Adenine (b) (c) Cytosine	Thymine (d) Uraci	1		
	, , , ,	, ,			
11.	The width of a double 34 A°	helix is ———	———. (a)	30 A° (b)	
	(c) 24 A°	(d) 20 A ^c)		
12.	The nitrogenous	base prese	nt in	lectin is	
	(a) Serine				
	(b) Choline(c) Inositol				
	(c) Inositol(d) Ethanolamine				
13.	Calcium deficiency in	the body occurs in	n the absence o	f	
	 .	,			
	(a) Vit D (b)	Vit C			
	(c) Vit A	(d) Vit B			
14.	The deficiency of Vita	min B ₁ results in a	condition calle	d	
	 .				
	(a) Scurvy (b) Chello	osis (c) Beriberi (d) Pellagra		
15.	The RDA of Vit A for a	n adult is ———	(a)	1000 lu	
	(b)	3000 lu			
	(c)	5000 Iu	(d) 8000 Iu		
	PART B –	$-(2 \Box 5 = 10)$	marks) Answ	ver any	
	TWO questions of		,	·	
16.	Explain the stru disaccharides.	cture and	importance	of	
17.	Write notes on the bo	onds involved in pr	otein structure.		
18.	Outline the clas examples.	sification of	enzymes	with	
19.	Differentiate saturate	d fatty acids from	unsaturated fat	ty acids.	

Highlight the source, RDA, function and deficiency disorder of Vit C.

20.

22.	(a)	Explain the classification of aminoacids based on their side chains.	A
		Or	R
	(b)	Outline the structural levels of organization of proteins.	T
23.	(a)	Write notes on	C
		(i) MM equation	
		(ii) LB plot Or	(
	(b)	Describe briefly on coenzymes and cofactors with suitable examples.	5
		10 = 50 marks) Answer ALL questions.	